

#### SCHOOL OF ENGINEERING AND TECHNOLOGY

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

### **B.TECH - FULL TIME (UG - 2019)**

| COURSE<br>CODE | COURSE TITLE             | СО  | COURSE OUTCOMES                                                                                                            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | P012 |
|----------------|--------------------------|-----|----------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                |                          | CO1 | Read articles of a general kind in magazines and newspapers.                                                               |     |     |     |     | ✓   |     |     |     |     |      |      |      |
| 19147811       | COMMUNICATIVE<br>ENGLISH | CO2 | Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English. |     |     |     |     |     |     |     |     |     | ✓    |      |      |
|                |                          | CO3 | Comprehend conversations and short talks delivered in English                                                              |     |     |     |     |     |     |     |     | ~   |      |      |      |

|          |                                | CO4 | Write short essays of a general kind and personal letters and emails in English.                                                                                |   |   |  |  |   | ✓ |   |   |
|----------|--------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--|--|---|---|---|---|
|          |                                | CO1 | Use both the limit definition and rules of differentiation to differentiate functions.                                                                          |   |   |  |  |   |   |   | ~ |
|          |                                | CO2 | Apply differentiation to solve maxima and minima problems.                                                                                                      | ✓ |   |  |  |   |   |   |   |
|          |                                | CO3 | Evaluate integrals both by using Riemann<br>sums and by using the Fundamental Theorem<br>of Calculus.                                                           |   | ✓ |  |  |   |   |   |   |
| 19148S12 | ENGINEERING<br>MATHEMATICS – I | CO4 | Apply integration to compute multiple<br>integrals, area, volume, integrals in polar<br>coordinates, in addition to change of order<br>and change of variables. |   |   |  |  | ✓ |   |   |   |
|          |                                | CO5 | Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.                                           |   |   |  |  |   |   | ✓ |   |
|          |                                | CO6 | Determine convergence/divergence of<br>improper integrals and evaluate convergent<br>improper integrals.                                                        |   | ~ |  |  |   |   |   |   |
|          |                                | C07 | Apply various techniques in solving differential equations.                                                                                                     |   |   |  |  |   |   |   | ~ |

|          |                          | CO1 | the students will gain knowledge on the basics of properties of matter and its applications,                                                                                                                         |   |   |   | ✓ |   |   |  |   |  |
|----------|--------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|---|--|
|          |                          | CO2 | the students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,                                                                                             | ✓ |   |   |   |   |   |  |   |  |
| 19149813 | ENGINEERING<br>PHYSICS   | CO3 | the students will have adequate knowledge on<br>the concepts of thermal properties of<br>materials and their applications in expansion<br>joints and heat exchangers,                                                |   | ~ |   |   |   |   |  |   |  |
|          |                          | CO4 | the students will get knowledge on advanced<br>physics concepts of quantum theory and its<br>applications in tunneling microscopes, and                                                                              | ✓ |   |   |   |   |   |  | ✓ |  |
|          |                          | CO5 | the students will understand the basics of crystals, their structures and different crystal growth techniques.                                                                                                       |   |   | ✓ |   |   |   |  |   |  |
| 19149S14 | ENGINEERING<br>CHEMISTRY | CO1 | The knowledge gained on engineering<br>materials, fuels, energy sources and water<br>treatment techniques will facilitate better<br>understanding of engineering processes and<br>applications for further learning. |   |   |   |   |   | ~ |  |   |  |
| 19154S15 | ENGINEERING<br>GRAPHICS  | CO1 | familiarize with the fundamentals and standards of Engineering graphics                                                                                                                                              |   |   |   |   | ~ |   |  |   |  |

|               |                               | CO2        | perform freehand sketching of basic<br>geometrical constructions and multiple views<br>of objects. |   |   | ✓ |              |   |   |   |   |   |   |   |
|---------------|-------------------------------|------------|----------------------------------------------------------------------------------------------------|---|---|---|--------------|---|---|---|---|---|---|---|
|               |                               | CO3        | project orthographic projections of lines and plane surfaces.                                      |   |   |   |              |   |   |   |   |   | ~ |   |
|               |                               | <b>CO4</b> | draw projections and solids and development of surfaces.                                           |   |   |   |              | ~ |   |   |   |   |   |   |
|               |                               | CO5        | visualize and to project isometric and perspective sections of simple solids.                      |   |   | ✓ |              |   |   |   |   |   |   |   |
|               | PROBLEM SOLVING<br>AND PYTHON | CO1        | Develop algorithmic solutions to simple computational problems                                     | ~ |   |   |              |   |   |   |   |   |   |   |
|               | PKUGKAMIMING                  | CO2        | Read, write, execute by hand simple Python programs.                                               |   | ~ |   |              |   |   |   |   |   |   |   |
| 17150S16      |                               | CO3        | Structure simple Python programs for solving problems.                                             |   |   |   |              |   |   | ~ |   |   |   |   |
|               |                               | <b>CO4</b> | Decompose a Python program into functions.                                                         |   |   |   | $\checkmark$ |   |   |   |   |   |   |   |
|               |                               | CO5        | Represent compound data using Python lists, tuples, dictionaries.                                  |   |   |   |              |   |   |   | ~ |   |   |   |
| P<br>19150L17 |                               | CO6        | Read and write data from/to files in Python Programs.                                              |   |   |   |              | ~ |   |   |   |   |   |   |
|               |                               | C01        | Write, test, and debug simple Python programs.                                                     |   |   |   |              |   |   |   |   |   |   | ~ |
|               | AND PYTHON<br>PROGRAMMING     | CO2        | Implement Python programs with conditionals and loops.                                             |   |   |   |              |   |   |   |   | ✓ |   |   |
|               | LADUKATUKY                    | CO3        | Develop Python programs step-wise by defining functions and calling them.                          |   |   |   |              |   | ✓ |   |   |   |   |   |

|                         |                                        | CO4        | Use Python lists, tuples, dictionaries for representing compound data.                                                                    |   |              | ✓ |   |   |  |   |   |   |
|-------------------------|----------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|---|---|---|--|---|---|---|
|                         |                                        | CO5        | Read and write data from/to files in Python.                                                                                              |   |              |   |   | ✓ |  |   |   |   |
| 19150L18                | PHYSICS AND<br>CHEMISTRY<br>LABORATORY | CO1        | apply principles of elasticity, optics and<br>thermal properties for engineering<br>applications.                                         | ~ |              |   |   |   |  |   |   |   |
|                         |                                        | CO1        | Read technical texts and write area- specific texts effortlessly.                                                                         |   |              |   |   |   |  |   |   | ✓ |
| 19147S21<br>17148S22A M | TECHNICAL<br>ENGLISH                   | CO2        | Listen and comprehend lectures and talks in their area of specialisation successfully.                                                    |   |              |   |   |   |  |   | ✓ |   |
|                         |                                        | CO3        | Speak appropriately and effectively in varied formal and informal contexts.                                                               |   |              |   |   | ✓ |  |   |   |   |
|                         |                                        | CO4        | Write reports and winning job applications.                                                                                               |   | $\checkmark$ |   |   |   |  |   |   |   |
|                         | ENGINEERING<br>MATHEMATICS – II        | <b>CO1</b> | Eigen values and eigenvectors,<br>diagonalization of a matrix, Symmetric<br>matrices, Positive definite matrices and<br>similar matrices. |   |              |   | ✓ |   |  |   |   | ✓ |
|                         |                                        | CO2        | Gradient, divergence and curl of a vector point function and related identities.                                                          |   |              |   |   |   |  | ~ |   |   |

|                        |                                             | CO3 | Evaluation of line, surface and volume<br>integrals using Gauss, Stokes and Green's<br>theorems and their verification.                                                                                                                          | ✓ |          |   |  |   |  |   |
|------------------------|---------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|---|--|---|--|---|
|                        |                                             | CO4 | Analytic functions, conformal mapping and complex integration.                                                                                                                                                                                   |   |          |   |  |   |  | ✓ |
|                        |                                             | CO5 | Laplace transform and inverse transform of<br>simple functions, properties, various related<br>theorems and application to differential<br>equations with constant coefficients.                                                                 |   |          |   |  | ✓ |  |   |
|                        |                                             | CO1 | gain knowledge on classical and quantum electron theories, and energy band structuues,                                                                                                                                                           |   |          | ✓ |  |   |  |   |
| 19148S22A<br>19149S24A |                                             | CO2 | acquire knowledge on basics of<br>semiconductor physics and its applications in<br>various devices,                                                                                                                                              |   |          |   |  |   |  |   |
|                        | PHYSICS FOR<br>ELECTRONICS                  | CO3 | get knowledge on magnetic and dielectric properties of materials,                                                                                                                                                                                |   |          |   |  |   |  | ✓ |
|                        | ENGINEERING                                 | CO4 | have the necessary understanding on the<br>functioning of optical materials for<br>optoelectronics,                                                                                                                                              |   |          |   |  | ✓ |  |   |
|                        |                                             | CO5 | understand the basics of quantum structures<br>and their applications in spintronics and<br>carbon electronics.                                                                                                                                  | ✓ |          |   |  |   |  |   |
|                        | ENVIRONMENTAL<br>SCIENCE AND<br>ENGINEERING | CO1 | Environmental Pollution or problems cannot<br>be solved by mere laws. Public participation<br>is an important aspect which serves the<br>environmental Protection. One will obtain<br>knowledge on the following after completing<br>the course. |   | <b>~</b> |   |  |   |  |   |

|           |                                    | CO2        | Public awareness of environmental is at infant stage.                                           |              | ~ |   |              |   |              |   |   |
|-----------|------------------------------------|------------|-------------------------------------------------------------------------------------------------|--------------|---|---|--------------|---|--------------|---|---|
|           |                                    | CO3        | Ignorance and incomplete knowledge has lead to misconceptions                                   |              |   |   |              |   | $\checkmark$ |   |   |
|           |                                    |            |                                                                                                 |              |   |   |              |   |              |   |   |
|           |                                    | CO4        | Development and improvement in std. of<br>living has lead to serious environmental<br>disasters |              |   |   |              |   | ~            |   |   |
|           |                                    | <b>CO1</b> | Ability to analyse electrical circuits                                                          |              |   |   |              |   | $\checkmark$ |   |   |
| 101538250 | <b>ΓΙΡΟΙΠΤ ΤΗΓΟΡ</b> Υ             | CO2        | Ability to apply circuit theorems                                                               |              |   |   |              |   |              |   |   |
| 171335230 |                                    | CO3        | Ability to analyse transients                                                                   |              |   |   |              | ~ |              |   |   |
|           |                                    | CO1        | appreciate the Civil and Mechanical<br>Engineering components of Projects.                      |              |   | ✓ |              |   |              |   |   |
|           |                                    | CO2        | explain the usage of construction material and proper selection of construction materials.      |              |   |   |              |   |              |   |   |
|           | BASIC CIVIL AND                    | CO3        | measure distances and area by surveying                                                         | $\checkmark$ |   |   |              |   |              |   |   |
| 19154S26C | MECHANICAL<br>ENGINEERING          | <b>CO4</b> | identify the components used in power plant cycle.                                              |              |   | ~ |              |   |              |   |   |
|           |                                    | CO5        | demonstrate working principles of petrol and diesel engine.                                     |              |   |   |              |   |              |   | ~ |
|           |                                    | CO6        | elaborate the components of refrigeration and Air conditioning cycle.                           |              |   |   |              |   |              | ~ |   |
|           | EngineeringPracticesLa<br>boratory | CO1        | fabricate carpentry components and pipe connections including plumbing works.                   |              |   |   |              |   | $\checkmark$ |   |   |
| 19154L27  |                                    | <b>CO2</b> | use welding equipments to join the structures.                                                  |              |   |   | $\checkmark$ |   |              |   |   |
|           |                                    | CO3        | Carry out the basic machining operations                                                        |              |   |   | $\checkmark$ |   |              |   |   |
|           |                                    | <b>CO4</b> | Make the models using sheet metal works                                                         |              |   |   | $\checkmark$ |   |              |   |   |

|           |                           | CO5 | Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings                                                                                                            |   |  |   |              |   |   |              | ✓ |   |
|-----------|---------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|---|--------------|---|---|--------------|---|---|
|           |                           | CO6 | Carry out basic home electrical works and appliances                                                                                                                                                    |   |  |   |              | ✓ |   |              |   |   |
|           |                           | CO7 | Measure the electrical quantities                                                                                                                                                                       |   |  |   | $\checkmark$ |   |   |              |   |   |
|           |                           | CO8 | Elaborate on the components, gates, soldering practices.                                                                                                                                                |   |  | ~ |              |   |   |              |   |   |
| 19153L28C | ELECTRIC<br>CIRCUITS      | CO1 | Understand and apply circuit theorems and concepts in engineering applications.                                                                                                                         | ~ |  |   |              |   |   |              |   |   |
|           | LABORATORY                | CO2 | Simulate electric circuits.                                                                                                                                                                             |   |  |   |              |   |   | $\checkmark$ |   |   |
| 19149S31C |                           | CO1 | Understand how to solve the given standard partial differential equations.                                                                                                                              |   |  | ~ |              |   |   |              |   |   |
|           |                           | CO2 | Solve differential equations using Fourier<br>series analysis which plays a vital role in<br>engineering applications.                                                                                  |   |  |   |              |   |   | ~            |   |   |
|           | TRANSFORMS AND<br>PARTIAL | CO3 | Appreciate the physical significance of<br>Fourier series techniques in solving one and<br>two dimensional heat flow problems and one<br>dimensional wave equations.                                    |   |  |   |              |   |   |              |   | ~ |
|           | DIFFERENTIAL<br>EQUATIONS | CO4 | Understand the mathematical principles on<br>transforms and partial differential equations<br>would provide them the ability to formulate<br>and solve some of the physical problems of<br>engineering. |   |  |   |              |   |   |              | ✓ |   |
|           |                           | CO5 | Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.                                                     |   |  |   |              |   | ~ |              |   |   |

|          |                            | CO1 | Ability to design combinational and sequential Circuits.                                                                                |   |              | ✓ |   |  |   |   |   |
|----------|----------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|---|--------------|---|---|--|---|---|---|
|          |                            | CO2 | Ability to simulate using software package.                                                                                             |   | $\checkmark$ |   |   |  |   |   |   |
|          | DICITAL LOCIC              | CO3 | Ability to study various number systems and<br>simplify the logical expressions using<br>Boolean functions                              |   | ~            |   |   |  |   |   |   |
| 19153C32 | CIRCUITS                   | CO4 | Ability to design various synchronous and asynchronous circuits.                                                                        | ✓ |              |   |   |  |   |   |   |
|          |                            | CO5 | Ability to introduce asynchronous sequential circuits and PLDs                                                                          | ✓ |              |   |   |  |   |   |   |
|          |                            | CO6 | Ability to introduce digital simulation for<br>development of application oriented logic<br>circuits.                                   | ~ |              |   |   |  |   |   |   |
| 19153C33 |                            | CO1 | Ability to understand the basic mathematical concepts related to electromagnetic vector fields.                                         |   |              |   | ✓ |  |   |   |   |
|          |                            | CO2 | Ability to understand the basic concepts about<br>electrostatic fields, electrical potential, energy<br>density and their applications. |   |              |   |   |  |   | ~ |   |
|          | ELECTROMAGNETI<br>C THEORY | CO3 | Ability to acquire the knowledge in magneto static fields, magnetic flux density, vector potential and its applications.                |   |              |   |   |  | ✓ |   |   |
|          |                            | CO4 | Ability to understand the different methods of emf generation and Maxwell's equations                                                   |   |              |   |   |  |   | ~ |   |
|          |                            | CO5 | Ability to understand the basic concepts electromagnetic waves and characterizing parameters                                            |   |              |   |   |  |   |   | ✓ |

|               |                                  | CO6        | Ability to understand and compute<br>Electromagnetic fields and apply them for<br>design and analysis of electrical equipment<br>and systems | ~ |   |   |   |   |   |   |   |   |
|---------------|----------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|
|               | ELECTRICAL<br>MACHINES – I       | CO1        | Ability to analyze the magnetic-circuits.                                                                                                    |   |   | ~ |   |   |   |   |   |   |
|               |                                  | CO2        | Ability to acquire the knowledge in constructional details of transformers.                                                                  |   |   |   |   |   |   | ~ |   |   |
| 19153C34      |                                  | CO3        | Ability to understand the concepts of electromechanical energy conversion.                                                                   |   |   |   |   |   |   |   | ✓ |   |
|               |                                  | CO4        | Ability to acquire the knowledge in working principles of DC Generator.                                                                      |   |   | ~ |   |   |   |   |   |   |
| E<br>19153C35 |                                  | CO5        | Ability to acquire the knowledge in working principles of DC Motor                                                                           |   |   |   |   |   |   |   |   | ~ |
|               |                                  | CO6        | Ability to acquire the knowledge in various losses taking place in D.C. Machines                                                             |   |   |   |   | ~ |   |   |   |   |
|               | ELECTRON DEVICES<br>AND CIRCUITS | CO1        | Explain the structure and working operation of basic electronic devices.                                                                     | ✓ |   |   |   |   |   |   |   |   |
|               |                                  | CO2        | Able to identify and differentiate both active and passive elements                                                                          |   | ~ |   |   |   |   |   |   |   |
|               |                                  | CO3        | Analyze the characteristics of different<br>electronic devices such as diodes and<br>transistors                                             | ✓ |   |   |   |   |   |   | ✓ |   |
|               |                                  | <b>CO4</b> | Choose and adapt the required components to construct an amplifier circuit.                                                                  |   |   |   | ~ |   |   |   |   |   |
|               |                                  | CO5        | Employ the acquired knowledge in design and analysis of oscillators                                                                          |   |   |   |   |   | ~ |   |   |   |

|           |                            | CO1        | Explain the layout, construction and working of the components inside a thermal power plant.                                                                                                 |   |   |   |   |   | ✓ |   |   |   |  |
|-----------|----------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|--|
|           |                            | CO2        | Explain the layout, construction and working<br>of the components inside a Diesel, Gas and<br>Combined cycle power plants.                                                                   |   |   | ✓ |   |   |   |   |   |   |  |
| 19153C36  | POWER PLANT<br>ENGINEERING | CO3        | Explain the layout, construction and working of the components inside nuclear power plants.                                                                                                  |   |   |   |   |   |   |   |   | ~ |  |
|           |                            | CO4        | Explain the layout, construction and working<br>of the components inside Renewable energy<br>power plants                                                                                    |   |   |   |   | √ |   |   |   |   |  |
| 191531.37 |                            | CO5        | Explain the applications of power plants<br>while extend their knowledge to power plant<br>economics and environmental hazards and<br>estimate the costs of electrical energy<br>production. |   |   | ✓ |   |   |   |   |   |   |  |
| 19153L37  | ELECTRONICS<br>LABORATORY  | CO1        | Ability to understand and analyse electronic circuits.                                                                                                                                       | ~ |   |   |   |   |   |   |   |   |  |
| 19153L37  | ELECTRICAL                 | CO1        | Ability to understand and analyze DC Generator                                                                                                                                               |   | ~ |   |   |   |   |   |   |   |  |
| 19153L38  | MACHINES<br>LABORATORY-I   | CO2<br>CO3 | Ability to understand and analyze DC Motor<br>Ability to understand and analyse<br>Transformers.                                                                                             |   |   |   | ✓ |   |   | ✓ |   |   |  |
| 19149C41C | NUMERICAL<br>METHODS       | C01        | Understand the basic concepts and techniques of solving algebraic and transcendental equations.                                                                                              |   |   |   |   |   |   |   | ✓ |   |  |
|           |                            | CO2        | Appreciate the numerical techniques of interpolation and error approximations in                                                                                                             |   |   |   |   | ~ |   |   |   |   |  |

|          |                             |     | various intervals<br>in real life situations.                                                                                                                  |   |   |   |   |  |   |   |
|----------|-----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|---|---|
|          |                             | CO3 | Apply the numerical techniques of differentiation and integration for engineering problems.                                                                    |   |   |   |   |  |   | ✓ |
|          |                             | CO4 | Understand the knowledge of various<br>techniques and methods for solving first and<br>second order ordinary differential equations                            |   |   |   |   |  | ✓ |   |
|          |                             | CO5 | Solve the partial and ordinary differential<br>equations with initial and boundary conditions<br>by using certain techniques with engineering<br>applications. |   |   |   | ✓ |  |   |   |
|          |                             | CO1 | Ability to understand the construction and working principle of Synchronous Generator                                                                          |   | ✓ |   |   |  |   |   |
|          |                             | CO2 | Ability to understand MMF curves and armature windings.                                                                                                        |   |   | ~ |   |  |   |   |
|          |                             | CO3 | Ability to acquire knowledge on Synchronous motor.                                                                                                             | ✓ |   |   |   |  |   |   |
| 19153C42 | ELECTRICAL<br>MACHINES – II | CO4 | Ability to understand the construction and<br>working principle of Three phase Induction<br>Motor                                                              |   |   |   |   |  |   | ✓ |
|          |                             | CO5 | Ability to understand the construction and<br>working principle of Special Machines                                                                            |   |   |   |   |  | < |   |
|          |                             | CO6 | Ability to predetermine the performance characteristics of Synchronous Machines.                                                                               |   |   | ✓ |   |  |   |   |

|          |                        | CO1 | To understand the importance and the<br>functioning of transmission line parameters.<br>To understand the concepts of Lines and                                       |   | ✓ |   |              |  |   |   |  |              |
|----------|------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--------------|--|---|---|--|--------------|
|          |                        | CO2 | Insulators.                                                                                                                                                           |   |   |   | $\checkmark$ |  |   |   |  | $\checkmark$ |
| 10153043 | TRANSMISSION AND       | CO3 | To acquire knowledge on the performance of Transmission lines.                                                                                                        |   |   |   |              |  |   | ✓ |  |              |
| 17155045 | DISTRIBUTION           | CO4 | To acquire knowledge on Underground<br>Cabilitys                                                                                                                      | ~ |   |   |              |  |   |   |  |              |
|          |                        | CO5 | To become familiar with the function of<br>different components used in Transmission<br>and Distribution levels of power system and<br>modelling of these components. |   |   |   |              |  |   |   |  | ✓            |
|          |                        | CO1 | To acquire knowledge on Basic functional elements of instrumentation                                                                                                  |   |   |   |              |  | ✓ |   |  |              |
|          |                        | CO2 | To understand the concepts of Fundamentals of electrical and electronic instruments                                                                                   |   |   |   | ~            |  |   |   |  |              |
|          | MEASUREMENTS           | CO3 | Ability to compare between various measurement techniques                                                                                                             |   |   |   |              |  |   |   |  |              |
| 19153C44 | AND<br>INSTRUMENTATION | CO4 | To acquire knowledge on Various storage and display devices                                                                                                           |   |   |   |              |  |   |   |  | ~            |
|          |                        | CO5 | To understand the concepts Various transducers and the data acquisition systems                                                                                       |   |   |   |              |  | ✓ |   |  |              |
|          |                        | CO6 | Ability to model and analyze electrical and<br>electronic Instruments and understand the<br>operational features of display Devices and<br>Data Acquisition System.   | ✓ |   |   |              |  |   |   |  |              |
| 19153C45 | LINEAR<br>INTEGRATED   | CO1 | Ability to acquire knowledge in IC fabrication procedure                                                                                                              |   |   | ~ |              |  |   |   |  |              |

|          | CIRCUITS AND<br>APPLICATIONS              | CO2 | Ability to analyze the characteristics of Op-<br>Amp                                                                                       |   | ~ |   |  |   |   |  |   |
|----------|-------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--|---|---|--|---|
|          |                                           | CO3 | To understand the importance of Signal analysis using Op-amp based circuits.                                                               |   |   |   |  |   | ✓ |  |   |
|          |                                           | CO4 | Functional blocks and the applications of special ICs like Timers, PLL circuits, regulator Circuits.                                       |   |   |   |  |   |   |  |   |
|          |                                           | CO5 | To understand and acquire knowledge on the Applications of Op-amp                                                                          |   |   |   |  |   | ✓ |  |   |
|          |                                           | CO6 | Ability to understand and analyse, linear<br>integrated circuits their Fabrication and<br>Application.                                     |   |   |   |  |   | ✓ |  |   |
|          |                                           | CO1 | Ability to develop various representations of<br>system based on the knowledge of<br>Mathematics, Science and Engineering<br>fundamentals. |   |   |   |  |   |   |  |   |
|          |                                           | CO2 | Ability to do time domain and frequency<br>domain analysis of various models of linear<br>system                                           |   |   |   |  | ~ |   |  |   |
| 19153C46 | CONTROL SYSTEMS                           | CO3 | Ability to interpret characteristics of the system to develop mathematical model.                                                          |   |   | ~ |  |   |   |  |   |
|          |                                           | CO4 | Ability to design appropriate compensator for the given specifications.                                                                    |   |   |   |  |   |   |  |   |
|          |                                           | CO5 | Ability to come out with solution for complex control problem                                                                              | ✓ |   |   |  |   |   |  |   |
|          |                                           | CO6 | Ability to understand use of PID controller in closed loop system.                                                                         |   |   | ✓ |  |   |   |  |   |
| 19153L47 | ELECTRICAL<br>MACHINES<br>LABORATORY - II | CO1 | Ability to understand and analyze EMF and MMF methods                                                                                      |   |   |   |  |   |   |  | ✓ |

|          |                        | CO2 | Ability to analyze the characteristics of V and<br>Inverted V curves         |   |  |              |   |   |   |   | ✓ |   |  |
|----------|------------------------|-----|------------------------------------------------------------------------------|---|--|--------------|---|---|---|---|---|---|--|
|          |                        | CO3 | Ability to understand the importance of Synchronous machines                 |   |  |              |   |   |   | ✓ |   |   |  |
|          |                        | CO4 | Ability to understand the importance of Induction Machines                   |   |  |              |   | ~ |   |   |   |   |  |
|          |                        | CO5 | Ability to acquire knowledge on separation of losses                         |   |  |              |   | ✓ |   |   |   |   |  |
|          |                        | C01 | Ability to understand and implement Boolean Functions.                       |   |  |              |   | ~ |   |   |   |   |  |
|          | LINEAR AND<br>DIGITAL  | CO2 | Ability to understand the importance of code conversion                      |   |  |              |   |   |   |   |   | ~ |  |
| 19153L48 | INTEGRATED<br>CIRCUITS | CO3 | Ability to Design and implement 4-bit shift registers                        |   |  |              |   |   | ~ |   |   |   |  |
|          | LABORATORY             | CO4 | Ability to acquire knowledge on Application of Op-Amp TOTA                   |   |  |              | ~ |   |   |   |   |   |  |
|          |                        | CO5 | Ability to Design and implement counters using specific counter IC.          |   |  | ~            |   |   |   |   |   |   |  |
| 19153C51 |                        | CO1 | Ability to model the power system under steady state operating condition     | ~ |  |              |   |   |   |   |   |   |  |
|          | POWER SYSTEM           | CO2 | Ability to understand and apply iterative techniques for power flow analysis |   |  |              |   |   |   |   | ~ |   |  |
|          | ANALYSIS               | CO3 | Ability to model and carry out short circuit studies on power system         |   |  | $\checkmark$ |   |   |   |   |   |   |  |
|          |                        | CO4 | Ability to model and analyze stability problems in power system              |   |  |              |   |   |   |   | ~ |   |  |

|                |                        | CO5 | Ability to acquire knowledge on Fault analysis.                                                                                      |   |   |   |              |  |   |   | ✓ |
|----------------|------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--------------|--|---|---|---|
|                |                        | CO6 | Ability to model and understand various<br>power system components and carry out<br>power flow, short circuit and stability studies. |   |   |   |              |  |   | ✓ |   |
|                |                        | CO1 | Ability to acquire knowledge in Addressing modes & instruction set of 8085 & 8051.                                                   |   |   |   |              |  | ~ |   |   |
|                |                        | CO2 | Ability to understand the importance of Interfacing                                                                                  |   |   | ~ |              |  |   |   |   |
| 10152052       | MICROPROCESSORS<br>AND | CO3 | Ability to explain the architecture of<br>Microprocessor and Microcontroller                                                         |   | ~ |   |              |  |   |   |   |
| 19153052       | MICROCONTROLLE<br>RS   | CO4 | Ability to write the assembly language programme                                                                                     |   | ~ |   |              |  |   |   |   |
|                |                        | CO5 | Ability to develop the Microprocessor and Microcontroller based applications.                                                        | ✓ |   |   |              |  |   |   |   |
|                |                        | CO6 | Ability to need & use of Interrupt structure 8085 & 8051.                                                                            | ~ |   |   |              |  |   |   |   |
| 19153C53       | POWER                  | CO1 | Ability to analyse AC-AC and DC-DC and DC-AC converters.                                                                             | ~ |   |   |              |  |   |   |   |
|                | ELECTRONICS            | CO2 | Ability to choose the converters for real time applications.                                                                         |   |   |   |              |  | ~ |   |   |
|                |                        | CO1 | Ability to create awareness about renewable<br>Energy Sources and technologies.                                                      |   |   |   |              |  |   | ✓ |   |
|                | RENEWABLE              | CO2 | Ability to get adequate inputs on a variety of issues in harnessing renewable Energy.                                                |   |   |   | $\checkmark$ |  |   |   |   |
| 19150FE54<br>A | ENERGI 5151EMS         | CO3 | Ability to recognize current and possible future role of renewable energy sources.                                                   |   |   |   |              |  |   |   | ✓ |

|          |                  | CO4 | Ability to explain the various renewable<br>energy resources and technologies and their<br>applications. |   |              |   |   | ~            |              |   |  |   |  |
|----------|------------------|-----|----------------------------------------------------------------------------------------------------------|---|--------------|---|---|--------------|--------------|---|--|---|--|
|          |                  | CO5 | Ability to understand basics about biomass energy.                                                       |   | ~            |   |   |              |              |   |  |   |  |
|          |                  | CO6 | Ability to acquire knowledge about solar energy.                                                         |   |              | ~ |   |              |              |   |  |   |  |
|          |                  | CO1 | Ability to understand the importance of<br>Fourier transform, digital filters and DS<br>Processors.      |   | ~            |   |   |              |              |   |  | ✓ |  |
|          |                  | CO2 | Ability to acquire knowledge on Signals and systems & their mathematical representation                  |   |              |   | ~ |              |              |   |  |   |  |
| 19153C55 | DIGITAL SIGNAL   | CO3 | Ability to understand and analyze the discrete time systems.                                             |   |              |   |   |              |              | ~ |  |   |  |
|          | PROCESSING       | CO4 | Ability to analyze the transformation techniques & their computation.                                    |   |              |   |   |              | $\checkmark$ |   |  |   |  |
|          |                  | CO5 | Ability to analyze the transformation techniques & their computation.                                    |   |              | ~ |   |              |              |   |  |   |  |
|          |                  | CO6 | Ability to acquire knowledge on<br>programmability digital signal processor &<br>quantization effects.   |   |              |   |   |              |              |   |  | ✓ |  |
| 19153C56 |                  | CO1 | Develop Java programs using OOP principles                                                               |   |              |   |   | $\checkmark$ |              |   |  |   |  |
|          | OR LECT ODIENTED | CO2 | Develop Java programs with the concepts inheritance and interfaces                                       |   |              | ~ |   |              |              |   |  |   |  |
|          | PROGRAMMING      | CO3 | Build Java applications using exceptions and I/O streams                                                 | ~ |              |   |   |              |              |   |  |   |  |
|          |                  | CO4 | Develop Java applications with threads and generics classes                                              |   | $\checkmark$ |   |   |              |              |   |  |   |  |

|          |                                | CO5 | Develop interactive Java programs using swings                                                   |   |   |   |   |   | ~ |   |   |   |
|----------|--------------------------------|-----|--------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|
| 19153L57 |                                |     |                                                                                                  |   |   |   |   |   |   |   |   |   |
|          |                                | CO1 | Ability to understand control theory and apply them to electrical engineering problems.          |   |   | ✓ |   |   |   |   |   |   |
|          |                                | CO2 | Ability to analyze the various types of converters                                               |   |   |   |   |   |   | ✓ |   |   |
|          | CONTROL AND<br>INSTRUMENTATION | CO3 | Ability to design compensators                                                                   |   |   |   | ✓ |   |   |   |   |   |
|          | LABORATORY                     | CO4 | Ability to understand the basic concepts of bridge networks.                                     |   |   |   |   |   |   |   |   | ~ |
|          |                                | CO5 | Ability to the basics of signal conditioning circuits                                            |   |   |   |   |   |   |   | √ |   |
|          |                                | CO6 | Ability to study the simulation packages.                                                        |   |   |   |   | ~ |   |   |   |   |
| 19153L58 | OBJECT ORIENTED                | CO1 | Develop and implement Java programs with<br>arraylist, exception handling and<br>multithreading. |   | ~ |   |   |   |   |   |   |   |
|          | PROGRAMMING<br>LABORATORY      | CO2 | Design applications using file processing, generic programming and event handling.               |   |   |   | ~ |   |   |   |   |   |
| 19153L59 | PROFESSIONAL                   | C01 | Make effective presentations                                                                     | ~ |   |   |   |   |   |   |   |   |
|          | COMMUNICATION                  | CO2 | Participate confidently in Group Discussions                                                     |   |   |   |   |   |   |   |   | ✓ |
|          |                                | CO3 | Attend job interviews and be successful in them                                                  |   |   |   |   |   |   |   | ✓ |   |

|          |                | CO4 | Develop adequate Soft Skills required for the workplace                                                       |   |   |   | ✓ |   |   |  |   |
|----------|----------------|-----|---------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|---|
| 19153C61 |                | CO1 | Ability to understand and suggest a converter for solid state drive.                                          |   | ~ |   |   |   |   |  |   |
|          |                | CO2 | Ability to select suitability drive for the given application                                                 |   |   | ~ |   |   |   |  | ✓ |
|          | SOLID STATE    | CO3 | Ability to study about the steady state<br>operation and transient dynamics of a motor<br>load system.        |   |   |   |   |   | ~ |  |   |
|          | DRIVES         | CO4 | Ability to analyze the operation of the converter/chopper fed dc drive                                        | ~ |   |   |   |   |   |  |   |
|          |                | CO5 | Ability to analyze the operation and performance of AC motor drives                                           |   |   |   |   |   |   |  | ✓ |
|          |                | CO6 | Ability to analyze and design the current and speed controllers for a closed loop solid state DC motor drive. |   |   |   |   | ✓ |   |  |   |
| 19153C62 | PROTECTION AND | C01 | Ability to understand and analyze<br>Electromagnetic and Static Relays.                                       |   |   | ~ |   |   |   |  |   |
|          | SWITCHGEAR     | CO2 | Ability to suggest suitability circuit breaker                                                                |   |   |   |   |   |   |  |   |

|           |                            | CO3 | Ability to find the causes of abnormal operating conditions of the apparatus and system.                                                       |   |   |  |   |   |   |  | ✓ |
|-----------|----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--|---|---|---|--|---|
|           |                            | CO4 | Ability to analyze the characteristics and functions of relays and protection schemes                                                          |   |   |  |   | ✓ |   |  |   |
|           |                            | CO5 | Ability to study about the apparatus protection, static and numerical relays.                                                                  | ✓ |   |  |   |   |   |  |   |
|           |                            | CO6 | Ability to acquire knowledge on functioning of circuit breaker                                                                                 |   | ✓ |  |   |   |   |  |   |
| 19153C63  |                            | CO1 | Ability to understand and analyze Embedded systems.                                                                                            | ✓ |   |  |   |   |   |  |   |
|           |                            | CO2 | Ability to suggest an embedded system for a given application.                                                                                 |   |   |  |   |   | ~ |  |   |
|           | EMBEDDED                   | CO3 | Ability to operate various Embedded<br>Development Strategies                                                                                  |   |   |  |   |   |   |  |   |
|           | SYSTEMS                    | CO4 | Ability to study about the bus Communication in processors.                                                                                    |   |   |  |   |   | ~ |  |   |
|           |                            | CO5 | Ability to acquire knowledge on various processor scheduling algorithms.                                                                       |   |   |  |   |   | ~ |  |   |
|           |                            | CO6 | Ability to understand basics of Real time operating system.                                                                                    |   |   |  |   |   |   |  |   |
| 19153E64E | MODERN POWER<br>CONVERTERS | CO1 | Ability to suggest converters for AC-DC conversion and SMPS                                                                                    |   |   |  | ✓ |   |   |  |   |
| 19153E65C | POWER QUALITY              | CO1 | Ability to understand various sources, causes<br>and effects of power quality issues, electrical<br>systems and their measures and mitigation. |   | ✓ |  |   |   |   |  |   |

|          |                           | CO2        | Ability to analyze the causes & Mitigation techniques of various PQ events.                                          |   |  |   |   |   |   |              |   |              |   |
|----------|---------------------------|------------|----------------------------------------------------------------------------------------------------------------------|---|--|---|---|---|---|--------------|---|--------------|---|
|          |                           | CO3        | Ability to study about the various Active & Passive power filters.                                                   | ~ |  |   |   |   |   |              |   |              |   |
|          |                           | <b>CO4</b> | Ability to understand the concepts about<br>Voltage and current distortions, harmonics.                              |   |  | ~ |   |   |   |              |   |              |   |
|          |                           | CO5        | Ability to analyze and design the passive filters.                                                                   |   |  |   |   |   |   |              |   |              | ~ |
|          |                           | CO6        | Ability to acquire knowledge on compensation techniques.                                                             |   |  |   |   |   |   |              | ~ |              |   |
|          |                           | <b>CO7</b> | Ability to acquire knowledge on DVR.                                                                                 |   |  |   |   |   |   | $\checkmark$ |   |              |   |
|          |                           | CO1        | Ability to practice and understand converter<br>and inverter circuits and apply software for<br>engineering problems |   |  |   |   | ~ |   |              |   |              |   |
|          | POWER                     | CO2        | Ability to experiment about switching characteristics various switches                                               |   |  |   |   | ~ |   |              |   |              |   |
| 19153L66 | ELECTRONICS AND<br>DRIVES | CO3        | Ability to analyze about AC to DC converter circuits                                                                 |   |  |   |   | ~ |   |              |   |              |   |
|          | LABORATORY                | <b>CO4</b> | Ability to analyze about DC to AC circuits.                                                                          |   |  |   |   |   |   |              |   | $\checkmark$ |   |
|          |                           | CO5        | Ability to acquire knowledge on AC to AC converters                                                                  |   |  |   |   |   | ~ |              |   |              |   |
|          |                           | CO6        | Ability to acquire knowledge on simulation software                                                                  |   |  |   | ✓ |   |   |              |   |              |   |
|          | MICROPROCESSORS<br>AND    | CO1        | Ability to understand and apply computing<br>platform and software for engineering<br>problems                       |   |  | ~ |   |   |   |              |   |              |   |
| 19153L67 | MICROCONTROLLE<br>RS      | CO2        | Ability to programming logics for code conversion.                                                                   | ~ |  |   |   |   |   |              |   |              |   |
|          | LADURAIUKI                | CO3        | Ability to acquire knowledge on A/D and D/A                                                                          |   |  |   |   |   |   |              | ✓ |              |   |

|               |              | CO4 | Ability to understand basics of serial communication                                                                                                                         |   |   |   | ✓ |  |  |   |   |   |   |
|---------------|--------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|--|---|---|---|---|
|               |              | CO5 | Ability to understand and impart knowledge<br>in DC and AC motor interfacing                                                                                                 |   |   |   |   |  |  |   | ✓ |   |   |
|               |              | CO6 | Ability to understand basics of software simulators.                                                                                                                         |   |   |   |   |  |  |   |   |   | ~ |
| 19153MP6<br>8 | MINI PROJECT | C01 | On Completion of the mini project work<br>students will be in a position to take up their<br>final year project work and find solution by<br>formulating proper methodology. |   |   |   |   |  |  |   |   | ~ |   |
|               |              | CO1 | Ability to understand Transients in power system                                                                                                                             |   |   |   |   |  |  | ✓ |   |   |   |
|               |              | CO2 | Ability to understand Generation and measurement of high voltage                                                                                                             |   |   | ✓ |   |  |  |   |   |   |   |
|               | HIGH VOLTAGE | CO3 | Ability to understand High voltage testing.                                                                                                                                  |   | ✓ |   |   |  |  |   |   |   |   |
| 19153C71      | ENGINEERING  | CO4 | Ability to understand various types of over voltages in power system                                                                                                         |   | ✓ |   |   |  |  |   |   |   |   |
|               |              | CO5 | Ability to measure over voltages.                                                                                                                                            | ✓ |   |   |   |  |  |   |   |   |   |
|               |              | CO6 | Ability to test power apparatus and insulation coordination                                                                                                                  | ~ |   |   |   |  |  |   |   |   |   |
| 19153C72      |              | CO1 | Ability to understand the day-to-day operation of electric power system.                                                                                                     | ~ |   |   |   |  |  |   |   |   |   |

|                |                          | CO2 | Ability to analyze the control actions to be<br>implemented on the system to meet the<br>minute to-minute variation of system demand. |   |   | ✓ |   |  |   |   |   |   |
|----------------|--------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|---|---|---|---|
|                | POWER SYSTEM             | CO3 | Ability to understand the significance of power system operation and control.                                                         |   |   |   |   |  |   | ~ |   |   |
|                | OPERATION AND<br>CONTROL | CO4 | Ability to acquire knowledge on real power-<br>frequency interaction                                                                  |   |   |   |   |  | ~ |   |   |   |
|                |                          | CO5 | Ability to understand the reactive power-<br>voltage interaction.                                                                     |   |   |   |   |  |   | ~ |   |   |
|                |                          | CO6 | Ability to design SCADA and its application for real time operation                                                                   |   |   |   |   |  |   |   |   | ~ |
|                |                          | CO1 | Ability to create awareness about renewable<br>Energy Sources and technologies.                                                       | ✓ |   |   |   |  |   |   |   |   |
|                |                          | CO2 | Ability to get adequate inputs on a variety of issues in harnessing renewable Energy.                                                 |   | ✓ |   |   |  |   |   |   |   |
| 10152072       | RENEWABLE                | CO3 | Ability to recognize current and possible future role of renewable energy sources.                                                    |   |   |   |   |  | ~ |   |   |   |
| 19153C73       | ENERGY SYSTEMS           | CO4 | Ability to explain the various renewable<br>energy resources and technologies and their<br>applications.                              |   |   |   |   |  |   |   | ~ |   |
|                |                          | CO5 | Ability to understand basics about biomass energy                                                                                     |   | ~ |   |   |  |   |   |   |   |
|                |                          | CO6 | Ability to acquire knowledge about solar energy.                                                                                      |   |   |   |   |  |   |   |   | ~ |
| 19154FE74<br>B | TESTING OF<br>MATERIALS  | CO1 | Identify suitable testing technique to inspect industrial component                                                                   |   |   |   | ~ |  |   |   |   |   |

|           |                             |     | ability to use the different technique and                                                                                                |   |   |              |   |   |   |   |  |              |
|-----------|-----------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------------|---|---|---|---|--|--------------|
|           |                             | CO2 | know its application and limitation                                                                                                       |   | ✓ |              |   |   |   |   |  |              |
|           |                             | CO1 | Differentiate the types of disasters, causes and<br>their impact on environment and society                                               |   |   | $\checkmark$ |   |   |   |   |  |              |
| 19153E75A | DISASTER                    | CO2 | Assess vulnerability and various methods of risk reduction measures as well as mitigation.                                                |   | ✓ |              |   |   |   |   |  | $\checkmark$ |
|           | MANAGEMENT                  | CO3 | Draw the hazard and vulnerability profile of<br>India, Scenarious in the Indian context,<br>Disaster damage assessment and<br>management. |   |   |              | ✓ |   |   |   |  |              |
| 19153E76F | TOTAL QUALITY<br>MANAGEMENT | CO1 | The student would be able to apply the tools<br>and techniques of quality management to<br>manufacturing and services processes.          |   |   |              |   |   |   | ~ |  |              |
|           |                             | CO1 | Ability to understand power system planning and operational studies.                                                                      |   |   |              |   |   | ~ |   |  |              |
|           | POWER SYSTEM                | CO2 | Ability to acquire knowledge on Formation of<br>Bus Admittance and Impedance Matrices and<br>Solution of Networks                         |   |   | ✓            |   |   |   |   |  |              |
| 19153L77  | SIMULATION<br>LABORATORY    | CO3 | Ability to analyze the power flow using GS and NR method                                                                                  |   |   |              |   |   |   |   |  | $\checkmark$ |
|           |                             | CO4 | Ability to find Symmetric and Unsymmetrical fault                                                                                         |   |   |              |   | ~ |   |   |  |              |
|           |                             | CO5 | Ability to understand the economic dispatch                                                                                               |   |   | $\checkmark$ |   |   |   |   |  |              |
|           |                             | CO6 | Ability to analyze the electromagnetic transients.                                                                                        | ✓ |   |              |   |   |   |   |  |              |
| 19153L78  |                             | CO1 | Ability to understand and analyze Renewable energy systems.                                                                               |   | ~ |              |   |   |   |   |  |              |

|           |                              | CO2 | Ability to train the students in Renewable<br>Energy Sources and technologies.                                                                                                                                                                            |   |   |   |   |   | ~ |              |   |   |
|-----------|------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--------------|---|---|
|           | RENEWARI E                   | CO3 | Ability to provide adequate inputs on a variety of issues in harnessing Renewable Energy.                                                                                                                                                                 |   |   | ✓ |   |   |   |              |   |   |
|           | ENERGY SYSTEMS<br>LABORATORY | CO4 | Ability to simulate the various Renewable energy sources.                                                                                                                                                                                                 |   |   |   |   |   |   | $\checkmark$ |   |   |
|           |                              | CO5 | Ability to recognize current and possible future role of Renewable energy sources                                                                                                                                                                         |   |   |   | ~ |   |   |              |   |   |
|           |                              | CO6 | Ability to understand basics of Intelligent Controllers.                                                                                                                                                                                                  |   |   |   |   |   |   |              |   | ~ |
| 19153E81G | PRINCIPLES OF<br>MANAGEMENT  | CO1 | Upon completion of the course, students will<br>be ability to have clear understanding of<br>managerial functions like planning,<br>organizing, staffing, leading & controlling<br>and have same basic knowledge on<br>international aspect of management |   |   |   |   |   |   |              | ¥ |   |
|           |                              | CO1 | Ability to understand the philosophy of the heart, lung, blood circulation and respiration system.                                                                                                                                                        |   |   |   |   | ~ |   |              |   |   |
|           | BIOMEDICAL                   | CO2 | Ability to provide latest ideas on devices of non-electrical devices.                                                                                                                                                                                     |   | ✓ |   |   |   |   |              |   |   |
|           | INSTRUMENTATION              | CO3 | Ability to gain knowledge on various sensing and measurement devices of electrical origin.                                                                                                                                                                |   |   |   | ~ |   |   |              |   |   |
|           |                              | CO4 | Ability to understand the analysis systems of various organ types.                                                                                                                                                                                        | ✓ |   |   |   |   |   |              |   |   |

|          |             | CO5 | Ability to bring out the important and modern methods of imaging techniques and their analysis.                                                                              |  |   |   |   |   |  |   | ✓ |
|----------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---|---|---|---|--|---|---|
|          |             | CO6 | Ability to explain the medical assistance/techniques, robotic and therapeutic equipments.                                                                                    |  |   |   |   |   |  | ✓ |   |
| 19153P81 | PROJECTWORK | C01 | On Completion of the project work students<br>will be in a position to take up any<br>challenging practical problems and find<br>solution by formulating proper methodology. |  |   |   | ✓ |   |  |   |   |
|          |             |     |                                                                                                                                                                              |  | • | • | • | • |  |   |   |

## DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

# B.TECH - PART TIME (UG - 2019)

| COURSE    |                                                        |     |                                                                                                                                                                                                         | PO | <b>PO1</b> | <b>PO1</b> | PO |
|-----------|--------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|------------|------------|----|
| CODE      | COURSE TITLE                                           | CO  | <b>COURSE OUTCOMES</b>                                                                                                                                                                                  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0          | 1          | 12 |
|           |                                                        | CO1 | Understand how to solve the given standard partial differential equations.                                                                                                                              |    |    |    |    | ✓  |    |    |    |    |            |            |    |
|           |                                                        | CO2 | Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.                                                                                        |    |    |    |    |    |    |    |    |    | ~          |            |    |
| 19148S11P | TRANSFORMS AND<br>PARTIAL<br>DIFFERENTIAL<br>EQUATIONS | CO3 | Appreciate the physical significance of<br>Fourier series techniques in solving one and<br>two dimensional heat flow problems and one<br>dimensional wave equations.                                    |    |    |    |    |    |    |    |    | <  |            |            |    |
|           |                                                        | CO4 | Understand the mathematical principles on<br>transforms and partial differential equations<br>would provide them the ability to formulate<br>and solve some of the physical problems of<br>engineering. |    |    |    |    |    |    |    |    |    | <          |            |    |

|           |                                  | CO5 | Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems. |   |   |   |   |  |   |   | ✓ |
|-----------|----------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|---|---|---|
|           |                                  | CO1 | To understand the methods of representation<br>of systems and getting their transfer function<br>models                                             | ✓ |   |   |   |  |   |   |   |
|           |                                  | CO2 | To provide adequate knowledge in the time<br>response of systems and steady state error<br>analysis                                                 |   |   | ~ |   |  |   |   |   |
| 19153H12P | CONTROL SYSTEM                   | CO3 | To give basic knowledge is obtaining the<br>open loop and closed–loop frequency<br>responses of systems                                             |   |   |   |   |  | ✓ |   |   |
| 19153H13P |                                  | CO4 | To understand the concept of stability of<br>control system and methods of stability<br>analysis                                                    |   |   |   |   |  |   | ✓ |   |
|           |                                  | CO5 | To study the three ways of designing compensation for a control system                                                                              |   |   | ~ |   |  |   |   |   |
|           |                                  | CO1 | To study about various network theorems and<br>the method of application to analyse a circuit.                                                      |   |   |   |   |  |   |   | ~ |
|           | CIRCUIT ANALYSIS<br>AND NETWORKS | CO2 | To know the concept of transfer function of a network and the nature of response to external inputs                                                 |   |   |   | ✓ |  |   |   |   |
|           |                                  | CO3 | To synthesize a network in different forms from the transfer function.                                                                              | ✓ |   |   |   |  |   |   |   |
|           |                                  | CO4 | To know the concept and design of frequency selective filters.                                                                                      |   | ~ |   |   |  |   |   |   |

| 10152U14D  | ELECTRONIC                 | CO1 | To acquaint the students with construction,<br>theory and characteristics of the following<br>electronic devices                                        | ✓ |   |   |   |   |   |  | ✓ |
|------------|----------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|---|
| 1915511141 | CIRCUITS                   | CO2 | Bipolar transistor, Field Effect transistor,<br>Multivibrators, Power control/regulator<br>devices, Feedback amplifiers and oscillators                 |   |   | ~ |   |   |   |  |   |
|            |                            | CO1 | To introduce the concept of rotating machines<br>and the principle of electromechanical energy<br>conversion in single and multiple excited<br>systems. |   |   |   |   |   | ~ |  |   |
| 19153H15P  |                            | CO2 | To understand the generation of D.C.<br>voltages by using different type of generators<br>and study their performance.                                  |   |   |   |   | ✓ |   |  |   |
|            | ELECTRICAL<br>MACHINES – I | CO3 | To study the working principles of D.C.<br>motors and their load characteristics, starting<br>and methods of speed control.                             |   | ✓ |   |   |   |   |  |   |
|            |                            | CO4 | To familiarize with the constructional details<br>of different type of transformers, working<br>principle and their performance.                        |   |   |   |   |   |   |  | ✓ |
|            |                            | CO5 | To estimate the various losses taking place in D.C. machines and transformers and to study the different testing method to arrive at their performance. |   |   |   | ✓ |   |   |  |   |
| 19148S21P  | NUMERICAL<br>METHODS       | CO1 | Apply the basic concepts of classifications of design of experiments in the field of agriculture.                                                       |   | ~ |   |   |   |   |  |   |

|           |                          | CO2        | Appreciate the numerical techniques of<br>interpolation in various intervals and apply<br>the numerical techniques of differentiation<br>and integration for engineering problems. | ✓ |   |   |              |              |   |   |              |              |  |              |
|-----------|--------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--------------|--------------|---|---|--------------|--------------|--|--------------|
|           |                          | CO3        | Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.                                                     |   | < |   |              |              |   |   |              |              |  |              |
|           |                          | CO4        | Solve the partial and ordinary differential<br>equations with initial and boundary conditions<br>by using certain techniques with engineering<br>applications                      |   |   |   |              |              |   | ~ |              |              |  |              |
|           |                          | <b>CO1</b> | Computer arithmetic and logic unit design.                                                                                                                                         |   |   |   | $\checkmark$ |              |   |   |              |              |  |              |
| 19150S22P | COMPUTER                 | CO2        | Input and output organizations and interfacing.                                                                                                                                    |   |   |   |              |              |   |   | $\checkmark$ |              |  |              |
| 19150822P | ARCHITECTURE             | CO3        | Control Mechanism and CPU functioning.                                                                                                                                             |   |   |   |              | $\checkmark$ |   |   |              |              |  |              |
|           |                          | CO4        | Pipeline architecture and vector processing.                                                                                                                                       |   |   |   |              |              |   |   |              |              |  | $\checkmark$ |
|           |                          | CO5        | Various memories and their organization.                                                                                                                                           |   |   |   |              |              |   |   |              | $\checkmark$ |  |              |
|           |                          | CO1        | Construction and performance of salient and non – salient type synchronous generators.                                                                                             |   |   |   |              |              | ~ |   |              |              |  |              |
|           |                          | CO2        | Principle of operation and performance of synchronous motor.                                                                                                                       |   |   | ~ |              |              |   |   |              |              |  |              |
| 19153H23P | ELECTRICAL<br>MACHINES H | CO3        | Construction, principle of operation and performance of induction machines.                                                                                                        |   |   |   |              | ~            |   |   |              |              |  |              |
|           | MACHINE5-II              | CO4        | Starting and speed control of three-phase induction motors.                                                                                                                        |   | ✓ |   |              |              |   |   |              |              |  |              |
|           |                          | CO5        | Construction, principle of operation and<br>performance of single phase induction motors<br>and special machines.                                                                  |   |   |   |              |              |   |   |              |              |  | ~            |

|                        |                                  | CO1 | To study various number systems and to<br>simplify the mathematical expressions using<br>Boolean functions simple problems.<br>To study implementation of combinational |              |   |   |              |   |   | ✓ |              |
|------------------------|----------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|---|--------------|---|---|---|--------------|
| 19153H24P              | DIGITAL<br>ELECTRONICS           | CO2 | circuits                                                                                                                                                                |              |   |   | $\checkmark$ |   |   |   |              |
|                        |                                  | CO3 | To study the design of various synchronous and asynchronous circuits.                                                                                                   |              | ~ |   |              |   |   |   |              |
|                        |                                  | CO4 | To expose the students to various memory devices.                                                                                                                       |              |   | ~ |              |   |   |   | ~            |
|                        |                                  | CO1 | To develop expression for computation of fundamental parameters of lines.                                                                                               |              |   |   |              |   | ✓ |   |              |
| 17153H25P              | TRANSMISSION AND<br>DISTRIBUTION | CO2 | To categorize the lines into different classes<br>and develop equivalent circuits for these<br>classes.                                                                 | ✓            |   |   |              |   |   |   |              |
|                        |                                  | CO3 | To analyze the voltage distribution in<br>insulator strings and cables and methods to<br>improve the same.                                                              |              |   |   |              |   |   |   | ~            |
|                        |                                  | CO1 | To develop expression for computation of fundamental parameters of lines.                                                                                               |              |   |   |              | ~ |   |   |              |
| 19148S31P<br>19152S32P | PROBABILITY AND<br>STATISTICS    | CO2 | To categorize the lines into different classes<br>and develop equivalent circuits for these<br>classes.                                                                 |              |   | ✓ |              |   |   |   |              |
|                        |                                  | CO3 | To analyze the voltage distribution in<br>insulator strings and cables and methods to<br>improve the same.                                                              |              |   |   |              |   |   |   |              |
|                        |                                  | CO1 | To study the IC fabrication procedure.                                                                                                                                  |              |   |   |              |   |   |   | $\checkmark$ |
|                        | ANALOG<br>INTEGRATED<br>CIRCUITS | CO2 | To study characteristics; realize circuits;<br>design for signal analysis using Op-amp Ics.                                                                             |              |   |   |              | ~ |   |   |              |
|                        |                                  | CO3 | To study the applications of Op-amp.                                                                                                                                    | $\checkmark$ |   |   |              |   |   |   |              |

|           |                        | CO4 | To study internal functional blocks and the applications of special Ics like Timers, PLL circuits, regulator Circuits, ADCs.        |   |   | ✓ |  |   |   |  |  |
|-----------|------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--|---|---|--|--|
|           |                        | CO1 | To get an overview of different types of<br>power semiconductor devices and their<br>switching characteristics.                     |   | ~ |   |  |   |   |  |  |
|           |                        | CO2 | To understand the operation, characteristics<br>and performance parameters of controlled<br>rectifiers                              |   |   |   |  |   | ✓ |  |  |
| 19153H33P | POWER<br>ELECTRONICS   | CO3 | To study the operation, switching techniques<br>and basics topologies of DC-DC switching<br>regulators.                             |   |   |   |  |   |   |  |  |
| 19153H34P |                        | CO4 | To learn the different modulation techniques<br>of pulse width modulated inverters and to<br>understand harmonic reduction methods. |   |   |   |  |   | ~ |  |  |
|           |                        | CO5 | To study the operation of AC voltage controller and Matrix converters.                                                              |   |   |   |  |   | ~ |  |  |
|           |                        | CO1 | Introduction to general instrument system, error, calibration etc.                                                                  |   |   |   |  |   |   |  |  |
|           | MEASUREMENTS           | CO2 | Emphasis is laid on analog and digital techniques used to measure voltage, current, energy and power etc.                           |   |   |   |  | ✓ |   |  |  |
|           | AND<br>INSTRUMENTATION | CO3 | To have an adequate knowledge of comparison methods of measurement.                                                                 |   |   | ~ |  |   |   |  |  |
|           |                        | CO4 | Elaborate discussion about storage & display devices.                                                                               |   |   |   |  |   |   |  |  |
|           |                        | CO5 | Exposure to various transducers and data acquisition system.                                                                        | ✓ |   |   |  |   |   |  |  |

|           |                 | CO1 | apply synchronous Motor                                                                                                                                                |  | $\checkmark$ |   |   |   |   |   |   |   |
|-----------|-----------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------|---|---|---|---|---|---|---|
| 19153L35P | MACHINES LAB    | CO2 | apply Load test on three phase squirrel cage Induction motor                                                                                                           |  |              |   |   |   |   |   |   | ~ |
|           |                 | CO3 | applySpeed control of three phase slip ring<br>Induction Motor                                                                                                         |  |              |   |   |   |   | ~ |   |   |
| 19153H41P | PROTECTION AND  | CO1 | To expose the students to the various faults in<br>power system and learn the various methods<br>of protection scheme.                                                 |  |              |   |   |   | ✓ |   |   |   |
|           | SWITCHGEAR      | CO2 | To understand the current interruption in<br>Power System and study the various<br>switchgears                                                                         |  |              |   | ~ |   |   |   |   |   |
| 19153H42P | HIGH VOLTAGE DC | CO1 | To study the performance of converters and modeling of DC line with controllers.                                                                                       |  |              |   | ~ |   |   |   |   |   |
|           | IKANSIMISSION   | CO2 | To study about converter harmonics and its mitigation using active and passive filters                                                                                 |  |              |   | ~ |   |   |   |   |   |
|           |                 | CO1 | To understand the stable steady-state<br>operation and transient dynamics of a motor-<br>load system.                                                                  |  |              |   |   |   |   |   | ✓ |   |
|           | SOLID STATE     | CO2 | To study and analyze the operation of the converter / chopper fed dc drive and to solve simple problems.                                                               |  |              |   |   | ~ |   |   |   |   |
|           | DRIVES          | CO3 | To study and understand the operation of both classical and modern induction motor drives.                                                                             |  |              | ✓ |   |   |   |   |   |   |
|           |                 | CO4 | To understand the differences between<br>synchronous motor drive and induction motor<br>drive and to learn the basics of permanent<br>magnet synchronous motor drives. |  | ~            |   |   |   |   |   |   |   |

|           |                                         | CO5 | To analyze and design the current and speed<br>controllers for a closed loop solid-state d.c<br>motor drive.                                                                                                                                                                                                                  | ✓ |   |   |  |   |   |   |   |
|-----------|-----------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--|---|---|---|---|
|           |                                         | CO1 | To provide an acquaintance of the physiology<br>of the heart, lung, blood circulation and<br>circulation respiration. Methods of different<br>transducers used.                                                                                                                                                               |   |   |   |  |   | ✓ |   |   |
| 19153E44C | BIOMEDICAL                              | CO2 | To introduce the student to the various sensing and measurement devices of electrical origin.                                                                                                                                                                                                                                 |   |   | ✓ |  |   |   |   |   |
| Р         | INSTRUMENTATION                         | CO3 | To provide the latest ideas on devices of non-<br>electrical devices.                                                                                                                                                                                                                                                         |   |   |   |  |   | ~ |   |   |
|           |                                         | CO4 | To bring out the important and modern methods of imaging techniques.                                                                                                                                                                                                                                                          |   |   |   |  |   |   |   | ✓ |
|           |                                         | CO5 | To provide latest knowledge of medical assistance / techniques and therapeutic equipments                                                                                                                                                                                                                                     |   |   |   |  |   |   | ✓ |   |
| 19153L45P | CONTROL SYSTEM<br>& MEASUREMENTS<br>LAB | CO1 | To provide a platform for understanding the<br>basic concepts of linear control theory and its<br>application to practical systems and To train<br>the students in the measurement of<br>displacement, resistance, inductance, torque<br>and angle etc., and to give exposure to AC, DC<br>bridges and transient measurement. |   |   |   |  | ✓ |   |   |   |
| 19153H51P | POWER SYSTEM<br>ANALYSIS                | CO1 | To model steady-state operation of large-scale<br>power systems and to solve the power flow<br>problems using efficient numerical methods<br>suitable for computer simulation.                                                                                                                                                |   | ~ |   |  |   |   |   |   |

|           |                        | CO2        | To model and analyse power systems under abnormal (fault) conditions.                                                                                      |              | ~ |   |   |  |   |              |   |
|-----------|------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|---|---|--|---|--------------|---|
|           |                        | CO3        | To model and analyse the dynamics of power<br>system for small-signal and large signal<br>disturbances and o design the systems for<br>enhancing stability |              | ✓ |   |   |  |   |              |   |
|           |                        | CO1        | Ability to understand various sources, causes<br>and effects of power quality issues, electrical<br>systems and their measures and mitigation.             | ~            |   |   |   |  |   |              |   |
|           |                        | CO2        | Ability to analyze the causes & Mitigation techniques of various PQ events.                                                                                | $\checkmark$ |   |   |   |  |   |              |   |
| 17153H52P | POWER QUALITY          | CO3        | Ability to study about the various Active & Passive power filters.                                                                                         | ✓            |   |   |   |  |   |              |   |
|           |                        | CO4        | Ability to understand the concepts about<br>Voltage and current distortions, harmonics.                                                                    |              |   |   | ~ |  |   |              |   |
|           |                        | CO5        | Ability to analyze and design the passive filters.                                                                                                         |              |   |   |   |  |   | ~            |   |
|           |                        | CO6        | Ability to acquire knowledge on compensation techniques.                                                                                                   |              |   |   |   |  | ✓ |              |   |
|           |                        | <b>CO7</b> | Ability to acquire knowledge on DVR.                                                                                                                       |              |   |   |   |  |   | $\checkmark$ |   |
| 19153H53P | SPECIAL                | CO1        | Construction, principle of operation and performance of synchronous reluctance motors.                                                                     |              |   |   |   |  |   |              | ~ |
|           | ELECTRICAL<br>MACHINES | CO2        | Construction, principle of operation and performance of stepping motors.                                                                                   |              | ~ |   |   |  |   |              |   |
|           |                        | CO3        | Construction, principle of operation and performance of switched reluctance motors.                                                                        |              |   | ~ |   |  |   |              |   |

|                |                                      | CO4 | Construction, principle of operation and<br>performance of permanent magnet brushless<br>D.C. motors.                                                                                                                                            |  |   |  |  | ✓ |   |   |              |
|----------------|--------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---|--|--|---|---|---|--------------|
|                |                                      | CO5 | Construction, principle of operation and<br>performance of permanent magnet<br>synchronous motors                                                                                                                                                |  |   |  |  |   |   | ~ |              |
| 101505544      | ENVIRONMENTAL                        | C01 | Environmental Pollution or problems cannot<br>be solved by mere laws. Public participation<br>is an important aspect which serves the<br>environmental Protection. One will obtain<br>knowledge on the following after completing<br>the course. |  | ✓ |  |  |   |   |   |              |
| 19158E54A<br>P | SCIENCE AND<br>ENGINEERING           | CO2 | Public awareness of environmental is at infant stage.                                                                                                                                                                                            |  |   |  |  |   | ~ |   |              |
|                |                                      | СОЗ | Ignorance and incomplete knowledge has lead to misconceptions                                                                                                                                                                                    |  |   |  |  |   |   |   | ~            |
| 19153L55P      | POWER<br>ELECTRONICS &<br>DRIVES LAB | CO1 | Development and improvement in std. of<br>living has lead to serious environmental<br>disasters                                                                                                                                                  |  |   |  |  |   |   | ~ |              |
|                | UTILIZATION OF                       | CO1 | To ensure that the knowledge acquired is<br>applied in various fields as per his job<br>requirements.                                                                                                                                            |  | ✓ |  |  |   |   |   |              |
| 19153H61P      | ELECTRICAL<br>ENERGY                 | CO2 | To orient the subject matter in the proper<br>direction, visits to industrial establishments<br>are recommended in order to familiarize with<br>the new developments in different areas.                                                         |  |   |  |  |   | ✓ |   |              |
| 19153H62P      |                                      | CO1 | Advantages of Static Relays                                                                                                                                                                                                                      |  |   |  |  |   |   |   | $\checkmark$ |

|                | SOLID STATE<br>RELAYS         | CO2<br>CO3 | Steady State and Transient Performance of<br>Signal Driving Elements<br>Static Relay Circuits for Generator Loss of<br>Field                                                                                                                              |   |   |   |   | ✓ |   |   | ✓ |   |
|----------------|-------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|
|                |                               | CO1        | To get an overview of system operation and control.                                                                                                                                                                                                       |   |   | ✓ |   |   |   |   |   |   |
| 19153H63P      | POWER SYSTEM<br>OPERATION AND | CO2        | To understand & model power-frequency<br>dynamics and to design power-frequency<br>controller.                                                                                                                                                            | ~ |   |   |   |   |   |   |   |   |
|                | CONTROL                       | CO3        | To understand & model reactive power-<br>voltage interaction and different methods of<br>control for maintaining voltage profile against<br>varying system load.                                                                                          |   | ✓ |   |   |   |   |   |   |   |
| 19160E64A<br>P | PRINCIPLES OF<br>MANAGEMENT   | CO1        | Upon completion of the course, students will<br>be ability to have clear understanding of<br>managerial functions like planning,<br>organizing, staffing, leading & controlling<br>and have same basic knowledge on<br>international aspect of management |   |   |   |   |   | ~ |   |   |   |
| 19153L65P      | POWER SYSTEMS<br>LAB          | CO1        | To simulate analysis and planning cases for a practical power system                                                                                                                                                                                      |   |   |   | ~ |   |   |   |   |   |
| 19160S71P      | TOTAL QUALITY<br>MANAGEMENT   | CO1        | The student would be able to apply the tools<br>and techniques of quality management to<br>manufacturing and services processes.                                                                                                                          |   |   |   |   |   |   | ✓ |   |   |
| 19153H72P      | ELECTRICAL                    | CO1        | Construction, principle of operation and performance of DC machine.                                                                                                                                                                                       |   |   |   |   | ✓ |   |   |   |   |
| 1713311/21     | MACHINE DESIGN                | CO2        | Construction, operating Characteristics of single and three phase transformer.                                                                                                                                                                            |   |   |   |   |   |   |   |   | ~ |

|                |                            | CO3 | Design and operating characteristics of Induction motors.                                                                                                                                    |   |   |   |   |  | ~ |              |
|----------------|----------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|---|--------------|
|                |                            | CO4 | Construction, principle of operation, Design<br>of synchronous machines and to have<br>knowledge of machine design in CAD                                                                    |   |   |   | ~ |  |   |              |
|                |                            | CO1 | Explain the layout, construction and working of the components inside a thermal power plant.                                                                                                 |   | ✓ |   |   |  |   |              |
|                |                            | CO2 | Explain the layout, construction and working<br>of the components inside a Diesel, Gas and<br>Combined cycle power plants.                                                                   |   |   | ~ |   |  |   |              |
| 19153H73P      | POWER PLANT<br>ENGINEERING | CO3 | Explain the layout, construction and working of the components inside nuclear power plants.                                                                                                  | ~ |   |   |   |  |   |              |
|                |                            | CO4 | Explain the layout, construction and working<br>of the components inside Renewable energy<br>power plants                                                                                    |   |   |   |   |  |   | ~            |
|                |                            | CO5 | Explain the applications of power plants<br>while extend their knowledge to power plant<br>economics and environmental hazards and<br>estimate the costs of electrical energy<br>production. |   |   |   |   |  | ~ |              |
|                |                            | CO1 | To study the generation of switching<br>transients and their control using circuit –<br>theoretical concept.                                                                                 |   |   | ~ |   |  |   |              |
| 19153E74A<br>P | POWER SYSTEM<br>TRANSIENTS | CO2 | To study the mechanism of lighting strokes and the production of lighting surges.                                                                                                            | ✓ |   |   |   |  |   |              |
|                |                            | CO3 | To study the propagation, reflection and refraction of travelling waves.                                                                                                                     |   |   |   |   |  |   | $\checkmark$ |

|           |             | CO4 | To study the impact of voltage transients<br>caused by faults, circuit breaker action, load<br>rejection on integrated power system.                                         |  |  |   |  | ✓ |  |
|-----------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|---|--|---|--|
| 19153P75P | PROJECTWORK | CO1 | On Completion of the project work students<br>will be in a position to take up any<br>challenging practical problems and find<br>solution by formulating proper methodology. |  |  | ✓ |  |   |  |

## DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

## M.TECH(POWER SYSTEM) - FULL TIME (PG - 2019)

| COURSE    |                                           |     |                                                                                                                                                        | PO           | <b>PO1</b> | <b>PO1</b> | PO |
|-----------|-------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|--------------|------------|------------|----|
| CODE      | COURSE TITLE                              | CO  | <b>COURSE OUTCOMES</b>                                                                                                                                 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9            | 0          | 1          | 12 |
|           |                                           | CO1 | Understand Finite differences, interpolation<br>techniques, Numerical differentiation and<br>Integration and apply it to various practical<br>problems |    |    |    |    |    |    |    |    |              | ✓          |            |    |
| 102405110 | APPLIED<br>MATHEMATICS FOR                | CO2 | Apply Numerical methods to solve first order<br>ordinary differential equations and Algebraic<br>and Transcendental equations                          |    |    |    | ✓  |    |    |    |    |              |            |            |    |
| 19248511D | ELECTRICAL<br>&ELECTRONICS<br>ENGINEERING | CO3 | Illustrate Laplace transform and its application in different fields                                                                                   |    |    |    |    |    |    |    |    |              | ✓          |            |    |
|           |                                           | CO4 | Apply Fourier transforms and its applications<br>to solve Ordinary and Partial differential<br>equations                                               |    |    |    |    |    |    |    |    |              |            |            | ~  |
|           |                                           | CO5 | Use Z-transform and its applications to solve difference equations                                                                                     |    |    |    |    |    |    |    |    |              |            | ✓          |    |
| 19272C12  | SYSTEM THEORY                             | CO1 | Basics of linear theory/linear algebra                                                                                                                 |    |    |    |    |    |    |    |    | $\checkmark$ |            |            |    |

|          |                                           | CO2 | State-space models, Transition matrix<br>properties, Minimal realization,<br>Controllability, Observability.                                                                       |   |   | ✓ |   |  |  |  |  |
|----------|-------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|--|--|--|
|          |                                           | CO3 | Internal Stability, Lyapunov Stability<br>theorems for linear systems, Linear Feedback<br>and Observers, Separation Principle.                                                     |   | ~ |   |   |  |  |  |  |
|          |                                           | CO1 | To review Deep concepts of Power System in the field of Power System.                                                                                                              |   | ~ |   |   |  |  |  |  |
| 19272C13 | POWER SYSTEM<br>MODELLING AND<br>ANALYSIS | CO2 | To address the underlying concepts and<br>methods behind Advanced Power System                                                                                                     | ✓ |   |   |   |  |  |  |  |
|          |                                           | CO3 | To impart knowledge of advancement in the field of power system with insight experimental approach.                                                                                | ~ |   |   |   |  |  |  |  |
|          |                                           | CO1 | This course also introduces optimization<br>methods and their application in practical<br>power system operation problems.                                                         | ~ |   |   |   |  |  |  |  |
| 19272C14 | OPERATIONS OF<br>POWER SYSTEMS-I          | CO2 | This course provides application of modern<br>numerical techniques and analytical methods<br>for dealing with and solving operation-related<br>problems in electric power systems. |   |   |   | ~ |  |  |  |  |

|          |                                                          | CO3 | The primary objective of this course is to<br>analyze efficient and optimum operation of<br>electric power generation system and to<br>provide an overview about the control<br>techniques adopted to ensure the economic<br>operation of a power system. |   |   |  |  |   | ~ |   |   |
|----------|----------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--|--|---|---|---|---|
| 19272C15 |                                                          | CO1 | In early invention of electric energy, dc power<br>was used but due to limitations of low voltage<br>dc systems, ac systems become popular.                                                                                                               |   |   |  |  | ~ |   |   |   |
|          | HIGH VOLTAGE<br>DIRECT CURRENT<br>TRANSMISSION<br>SYSTEM | CO2 | the factors such as are reactive power,<br>stability, power control, etc, impose<br>limitations on the amount of power to be<br>transmitted over ac lines.                                                                                                |   |   |  |  |   | ✓ |   |   |
|          |                                                          | CO3 | There are still several limitations of HVDC<br>transmission. Therefore, the transmission<br>system is mixed of HVAC and HVDC<br>systems                                                                                                                   |   |   |  |  |   |   |   | ~ |
|          |                                                          | CO1 | Formation of Y bus, Z bus, line parameters and modeling of transmission lines.                                                                                                                                                                            | ~ |   |  |  |   |   |   |   |
|          | POWER SYSTEM                                             | CO2 | Power flow analysis: Gauss – Seidel Method.                                                                                                                                                                                                               |   | < |  |  |   |   |   |   |
| 19272L17 | SIMULATION<br>LABORATORY – I                             | CO3 | Power flow analysis: Newton Raphson method.                                                                                                                                                                                                               |   |   |  |  | ~ |   |   |   |
|          |                                                          | CO4 | Plain Decoupled and Fast Decoupled methods.                                                                                                                                                                                                               |   |   |  |  |   |   | ~ |   |

| 19272C21             | EHV POWER<br>TRANSMISSION                     | CO1 | Students would be introduced to the issues in<br>designing power transmission lines operating<br>at EHV/UHV voltages especially about<br>insulation design, corona losses, audible noise<br>, insulation co-ordination, electric field under<br>the lines, issues due to mechanical vibrations<br>of overhead power transmission lines and<br>their mitigation etc. |   |   | ~ |   |  |  |   |   |
|----------------------|-----------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|--|---|---|
|                      |                                               | CO1 | This course also introduces optimization<br>methods and their application in practical<br>power system operation problems.                                                                                                                                                                                                                                          |   |   |   |   |  |  |   | ~ |
| 19272C22<br>19272C23 | ECONOMIC<br>OPERATIONS OF<br>DOWED SYSTEMS II | CO2 | This course provides application of modern<br>numerical techniques and analytical methods<br>for dealing with and solving operation-related<br>problems in electric power systems.                                                                                                                                                                                  |   |   |   | ~ |  |  |   |   |
|                      | POWER SYSTEMS-II                              | CO3 | The primary objective of this course is to<br>analyze efficient and optimum operation of<br>electric power generation system and to<br>provide an overview about the control<br>techniques adopted to ensure the economic<br>operation of a power system.                                                                                                           | ✓ |   |   |   |  |  |   |   |
|                      | DOWED SYSTEM                                  | CO1 | Discuss performance of protective relays,<br>components of protection scheme and relay<br>terminology over current protection.                                                                                                                                                                                                                                      |   | ~ |   |   |  |  |   |   |
|                      | PROTECTION                                    | CO2 | Explain the working of distance relays and<br>the effects of arc resistance, power swings,<br>line length and source impedance on<br>performance of distance relays.                                                                                                                                                                                                | √ |   |   |   |  |  | ✓ |   |

|           |                                             | CO3 | Discuss pilot protection, construction,<br>operating principles and performance<br>of differential relays and discuss protection of<br>generators, motors, transformer and Bus Zone<br>Protection.                      |   |   | ~ |   |   |   |  |   |  |
|-----------|---------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|---|--|
|           |                                             | CO4 | Explain the construction and operation of different types of circuit breakers.                                                                                                                                          |   |   |   |   |   | ~ |  |   |  |
|           |                                             | CO5 | Outline features of fuse, causes of<br>overvoltages and its protection, also modern<br>trends in Power System Protection.                                                                                               |   |   |   |   | ~ |   |  |   |  |
|           |                                             | CO1 | Discuss primary components of power<br>system planning, planning methodology for<br>optimum power system expansion, various<br>types of generation, transmission and<br>distribution.                                   |   | ✓ |   |   |   |   |  |   |  |
| 19272E24B |                                             | CO2 | Show knowledge of forecasting of future<br>load requirements of both demand and energy<br>by deterministic and statistical techniques<br>using forecasting tools.                                                       |   |   |   |   |   |   |  | ✓ |  |
|           | POWER SYSTEM<br>PLANNING AND<br>RELIABILITY | CO3 | Discuss methods to mobilize resources to<br>meet the investment requirement for the<br>power sector                                                                                                                     |   |   |   | ~ |   |   |  |   |  |
|           |                                             | CO4 | Understand economic appraisal to allocate<br>the resources efficiently and appreciate the<br>investment decisions                                                                                                       |   | ✓ |   |   |   |   |  |   |  |
|           |                                             | CO5 | Discuss expansion of power generation and<br>planning for system energy in the country,<br>evaluation of operating states of transmission<br>system, their associated contingencies and the<br>stability of the system. | ✓ |   |   |   |   |   |  |   |  |

|           |                                        | CO6 | Discuss principles of distribution planning,<br>supply rules, network development and the<br>system studies                                                                                     | ~ |   |   |              |   |   |   |   |   |
|-----------|----------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--------------|---|---|---|---|---|
|           |                                        | CO7 | Discuss reliability criteria for generation,<br>transmission, distribution and reliability<br>evaluation and analysis, grid reliability,<br>voltage disturbances and their remedies             |   |   |   |              |   | ~ |   |   |   |
|           |                                        | CO8 | Discuss planning and implementation of<br>electric –utility activities, market principles<br>and the norms framed by CERC for online<br>trading and exchange in the interstate power<br>market. |   |   | ~ |              |   |   |   |   |   |
| 19272E25A | WIND ENERGY                            | C01 | Explain the basics of solar energy conversion systems.                                                                                                                                          |   |   |   |              |   |   | ~ |   |   |
|           | CONVERSION                             | CO2 | Design a standalone PV system.                                                                                                                                                                  |   |   |   | $\checkmark$ |   |   |   |   |   |
|           | SYSTEMS                                | CO3 | Describe different wind energy conversion systems.                                                                                                                                              |   |   |   |              |   |   |   |   | ~ |
| 19272L26  | POWER SYSTEM<br>SIMULATION LAB –<br>II | CO1 | To provide better understanding of power system analysis through digital simulation.                                                                                                            |   |   |   |              |   |   |   | ✓ |   |
| 19272C31  | ELECTRICAL<br>TRANSIENTS IN            | CO1 | A quantitative foundation of the mechanism<br>of lighting strokes and the production of<br>lighting surges to understand how the various<br>types of Transients in the system produced.         |   |   |   |              | ✓ |   |   |   |   |
|           | POWER SYSTEMS                          | CO2 | Obtain the theoretic basis of the propagation,<br>reflection and refraction of travelling waves<br>for modeling of transmission line travelling<br>waves                                        |   | ✓ |   |              |   |   |   |   |   |

|           |                                  | CO3 | Grasp the concepts of the impact of voltage<br>transients caused by circuit<br>breaker action, switching on integrated power<br>system. |   |   | ~ |   |  |              |   |
|-----------|----------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|--------------|---|
|           |                                  | CO4 | Design of Insulations under the presence of transients and protection of power system against transient over voltages.                  | ✓ |   |   |   |  |              |   |
| 19272C32A | POWER<br>ELECTRONICS             | CO1 | To understand basic power electronic devices<br>and their role in power conversion                                                      |   |   |   |   |  |              | ~ |
|           | APPLICATIONS IN<br>POWER SYSTEMS | CO2 | <ul> <li>To study basic topologies of various<br/>converter</li> </ul>                                                                  |   |   |   |   |  | $\checkmark$ |   |
|           |                                  | CO1 | Reliably identify the sources of various power quality problems.                                                                        |   |   | ✓ |   |  |              |   |
|           |                                  | CO2 | Explain about causes of harmonic and its distortion effect.                                                                             |   |   |   | ~ |  |              |   |
| 19272E33A | POWER<br>CONDITIONING            | CO3 | Estimate the impact of various power quality problems on appliances.                                                                    |   | ✓ |   |   |  |              |   |
|           |                                  | CO4 | Educate the harmful effects of poor power quality and harmonics.                                                                        |   |   | ✓ |   |  |              |   |
| 19272E34A |                                  | CO5 | Decide the compensators and filters to keep<br>the power quality indices within the<br>standards.                                       | ✓ |   |   |   |  |              |   |
|           | SOFTWARE FOR                     | C01 | Used for problem-solving and control system design                                                                                      |   |   |   | ~ |  |              |   |
|           | CONTROL SYSTEM<br>DESIGN         | CO2 | Used for modeling plant dynamics, designing<br>control algorithms, and running closed-loop<br>simulations                               |   | ~ |   |   |  |              |   |

| 19272P35 | PROJECT WORK<br>PHASE-I  | CO1 | On Completion of the project work students<br>will be in a position to take up any<br>challenging practical problems and find<br>solution by formulating proper methodology. |   |  | ✓ |  |  |  |
|----------|--------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|---|--|--|--|
| 19272P44 | PROJECT WORK<br>PHASE-II | CO1 | On Completion of the project work students<br>will be in a position to take up any<br>challenging practical problems and find<br>solution by formulating proper methodology. | ~ |  |   |  |  |  |

## DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

## M.TECH (POWER SYSTEM) - PART TIME (PG - 2019)

| COURSE         |                                            |     |                                                                                                                                                        | PO | <b>PO1</b> | <b>PO1</b> | PO |
|----------------|--------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|------------|------------|----|
| CODE           | COURSE TITLE                               | CO  | COURSE OUTCOMES                                                                                                                                        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0          | 1          | 12 |
| 19248S11D<br>P |                                            | CO1 | Understand Finite differences, interpolation<br>techniques, Numerical differentiation and<br>Integration and apply it to various practical<br>problems |    |    |    |    |    |    |    |    |    | ✓          |            |    |
|                | APPLIED<br>MATHEMATICS FOR<br>ELECTRICAL & | CO2 | Apply Numerical methods to solve first order<br>ordinary differential equations and Algebraic<br>and Transcendental equations                          |    |    |    | ✓  |    |    |    |    |    |            |            |    |
|                | LECTRONICS<br>ENGINEERING                  | CO3 | Illustrate Laplace transform and its application in different fields                                                                                   |    |    |    |    |    |    |    |    |    | ✓          |            |    |
|                |                                            | CO4 | Apply Fourier transforms and its applications<br>to solve Ordinary and Partial differential<br>equations                                               |    |    |    |    |    |    |    |    |    |            |            | ✓  |
|                |                                            | CO5 | Use Z-transform and its applications to solve difference equations                                                                                     |    |    |    |    |    |    |    |    |    |            | ✓          |    |

| 19272C12P                       |                               | CO1 | Basics of linear theory/linear algebra                                                                                                                                                                                                                                                                                                                              |              |   |   |              |  | $\checkmark$ |   |  |
|---------------------------------|-------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|---|--------------|--|--------------|---|--|
|                                 | SYSTEM THEORY                 | CO2 | State-space models, Transition matrix<br>properties, Minimal realization,<br>Controllability, Observability.                                                                                                                                                                                                                                                        |              |   | ~ |              |  |              |   |  |
|                                 |                               | CO3 | Internal Stability, Lyapunov Stability<br>theorems for linear systems, Linear Feedback<br>and Observers, Separation Principle.                                                                                                                                                                                                                                      |              | ~ |   |              |  |              |   |  |
| 19272C13P<br>MODELLING ANALYSIS |                               | CO1 | To review Deep concepts of Power System in the field of Power System.                                                                                                                                                                                                                                                                                               |              | ~ |   |              |  |              |   |  |
|                                 | POWER SYSTEM<br>MODELLING AND | CO2 | To address the underlying concepts and methods behind Advanced Power System                                                                                                                                                                                                                                                                                         | $\checkmark$ |   |   |              |  |              |   |  |
|                                 | ANALYSIS                      | CO3 | To impart knowledge of advancement in the field of power system with insight experimental approach.                                                                                                                                                                                                                                                                 | ~            |   |   |              |  |              |   |  |
|                                 |                               | CO1 | Formation of Y bus, Z bus, line parameters and modeling of transmission lines.                                                                                                                                                                                                                                                                                      | ✓            |   |   |              |  |              |   |  |
|                                 | POWER SYSTEM                  | CO2 | Power flow analysis: Gauss – Seidel Method.                                                                                                                                                                                                                                                                                                                         |              |   |   | $\checkmark$ |  |              |   |  |
| 19272L14P                       | SIMULATION LAB – I            | CO3 | Power flow analysis: Newton Raphson method.                                                                                                                                                                                                                                                                                                                         |              |   |   |              |  |              | ~ |  |
|                                 |                               | CO4 | Plain Decoupled and Fast Decoupled methods.                                                                                                                                                                                                                                                                                                                         |              |   |   |              |  | ~            |   |  |
| 19272C21P                       | EHV POWER<br>TRANSMISSION     | CO1 | Students would be introduced to the issues in<br>designing power transmission lines operating<br>at EHV/UHV voltages especially about<br>insulation design, corona losses, audible noise<br>, insulation co-ordination, electric field under<br>the lines, issues due to mechanical vibrations<br>of overhead power transmission lines and<br>their mitigation etc. |              |   |   |              |  |              | ~ |  |

| 19272C22P      | POWER SYSTEM                                | CO1Discuss pilot protection, construct<br>operating principles and performance<br>ofdifferential relays and discuss pro<br>generators, motors, transformer and<br>Protection. | Discuss pilot protection, construction,<br>operating principles and performance<br>of differential relays and discuss protection of<br>generators, motors, transformer and Bus Zone<br>Protection.                      |   |   |   |  |   |   | ✓ |
|----------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--|---|---|---|
|                | PROTECTION                                  | CO2                                                                                                                                                                           | Explain the construction and operation of different types of circuit breakers.                                                                                                                                          | ~ |   |   |  |   |   |   |
|                |                                             | CO3                                                                                                                                                                           | Outline features of fuse, causes of<br>overvoltages and its protection, also modern<br>trends in Power System Protection.                                                                                               |   | ✓ |   |  |   |   |   |
| 19272E23B<br>P |                                             | CO1                                                                                                                                                                           | Discuss primary components of power<br>system planning, planning methodology for<br>optimum power system expansion, various<br>types of generation, transmission and<br>distribution.                                   |   |   |   |  | ✓ |   |   |
|                |                                             | CO2                                                                                                                                                                           | Show knowledge of forecasting of future<br>load requirements of both demand and energy<br>by deterministic and statistical techniques<br>using forecasting tools.                                                       |   |   |   |  |   | ✓ |   |
|                | POWER SYSTEM<br>PLANNING AND<br>RELIABILITY | CO3                                                                                                                                                                           | Discuss methods to mobilize resources to<br>meet the investment requirement for the<br>power sector                                                                                                                     |   | ✓ |   |  |   |   |   |
|                |                                             | CO4                                                                                                                                                                           | Understand economic appraisal to allocate<br>the resources efficiently and appreciate the<br>investment decisions                                                                                                       |   |   |   |  |   |   | ✓ |
|                |                                             | CO5                                                                                                                                                                           | Discuss expansion of power generation and<br>planning for system energy in the country,<br>evaluation of operating states of transmission<br>system, their associated contingencies and the<br>stability of the system. |   |   | ✓ |  |   |   |   |

|           |                                              | CO6 | Discuss principles of distribution planning,<br>supply rules, network development and the<br>system studies                                                                                                                                               | ✓ |   |   |   |   |  |          |  |
|-----------|----------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|--|----------|--|
|           |                                              | C07 | Discuss reliability criteria for generation,<br>transmission, distribution and reliability<br>evaluation and analysis, grid reliability,<br>voltage disturbances and their remedies                                                                       |   | ~ |   |   |   |  |          |  |
|           |                                              | CO8 | Discuss planning and implementation of<br>electric –utility activities, market principles<br>and the norms framed by CERC for online<br>trading and exchange in the interstate power<br>market.                                                           | ~ |   |   |   |   |  | <b>~</b> |  |
|           | ECONOMIC<br>OPERATIONS OF<br>POWER SYSTEMS-I | CO1 | This course also introduces optimization<br>methods and their application in practical<br>power system operation problems.                                                                                                                                |   |   | ~ |   |   |  |          |  |
| 19272C31P |                                              | CO2 | This course provides application of modern<br>numerical techniques and analytical methods<br>for dealing with and solving operation-related<br>problems in electric power systems.                                                                        |   |   |   |   | ~ |  |          |  |
|           |                                              | CO3 | The primary objective of this course is to<br>analyze efficient and optimum operation of<br>electric power generation system and to<br>provide an overview about the control<br>techniques adopted to ensure the economic<br>operation of a power system. |   |   |   | ~ |   |  |          |  |
| 19272C32P | HIGH VOLTAGE<br>DIRECT CURRENT               | CO1 | In early invention of electric energy, dc power<br>was used but due to limitations of low voltage<br>dc systems, ac systems become popular.                                                                                                               |   | ~ |   |   |   |  |          |  |

|                | TRANSMISSION<br>SYSTEM                        | CO2 | the factors such as are reactive power,<br>stability, power control, etc, impose<br>limitations on the amount of power to be<br>transmitted over ac lines.                         |   |   |   |   |   |   |   | ✓ |  |
|----------------|-----------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|--|
|                |                                               | CO3 | There are still several limitations of HVDC<br>transmission. Therefore, the transmission<br>system is mixed of HVAC and HVDC<br>systems                                            |   |   |   |   | ~ |   |   |   |  |
| 19272E33A<br>P |                                               | CO1 | To provide the electrical circuit concepts<br>behind the different working modes of<br>inverters so as to enable deep understanding<br>of their operation.                         |   |   | ✓ |   |   |   |   |   |  |
|                | ANALYSIS OF<br>INVERTERS                      | CO2 | To equip with required skills to derive the criteria for the design of inverters for UPS, drives etc.,                                                                             | ~ |   |   |   |   |   |   |   |  |
|                |                                               | CO3 | To analyse and comprehend the various operating modes of different configuration of inverters.                                                                                     |   | ✓ |   |   |   |   |   |   |  |
| 19272L34P      | POWER SYSTEM<br>SIMULATION LAB –<br>II        | CO1 | To provide better understanding of power system analysis through digital simulation.                                                                                               |   |   |   |   |   | ✓ |   |   |  |
| 19272C41P      | ECONOMIC<br>OPERATIONS OF<br>POWER SYSTEMS-II | CO1 | This course also introduces optimization<br>methods and their application in practical<br>power system operation problems.                                                         |   |   |   | ✓ |   |   |   |   |  |
|                |                                               | CO2 | This course provides application of modern<br>numerical techniques and analytical methods<br>for dealing with and solving operation-related<br>problems in electric power systems. |   |   |   |   |   |   | ~ |   |  |

|           |                             | CO3 | The primary objective of this course is to<br>analyze efficient and optimum operation of<br>electric power generation system and to<br>provide an overview about the control<br>techniques adopted to ensure the economic<br>operation of a power system. |                  |   | ✓ |   |  |   |   |
|-----------|-----------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|---|---|--|---|---|
| 102720420 |                             | CO1 | A quantitative foundation of the mechanism<br>of lighting strokes and the production of<br>lighting surges to understand how the various<br>types of Transients in the system produced.                                                                   |                  |   |   |   |  |   | ✓ |
|           | ELECTRICAL<br>TRANSIENTS IN | CO2 | Obtain the theoretic basis of the propagation,<br>reflection and refraction of travelling waves<br>for modeling of transmission line travelling<br>waves                                                                                                  |                  |   |   |   |  | ✓ |   |
|           | POWER SYSTEMS               | CO3 | Grasp the concepts of the impact of voltage<br>transients caused by circuit<br>breaker action, switching on integrated power<br>system.                                                                                                                   |                  |   |   | ~ |  |   |   |
|           |                             | CO4 | Design of Insulations under the presence of transients and protection of power system against transient over voltages.                                                                                                                                    |                  | ~ |   |   |  |   |   |
| 19272E43A | WIND ENERGY                 | CO1 | Explain the basics of solar energy conversion systems.                                                                                                                                                                                                    |                  |   | ~ |   |  |   |   |
| Р         | CUNVERSION                  | CO2 | Design a standalone PV system.                                                                                                                                                                                                                            | <br>$\checkmark$ |   |   |   |  |   |   |
| *         | SYSTEMS                     | CO3 | Describe different wind energy conversion systems.                                                                                                                                                                                                        |                  |   |   |   |  |   | ~ |

| 19272P44P      | PROJECT WORK<br>PHASE-I                  | CO1 | On Completion of the project work students<br>will be in a position to take up any<br>challenging practical problems and find<br>solution by formulating proper methodology. |   |   |   |   |   |  | √ |  |
|----------------|------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|--|---|--|
| 19272E53A<br>P | SOFTWARE FOR<br>CONTROL SYSTEM<br>DESIGN | CO1 | Used for problem-solving and control system design                                                                                                                           |   |   |   | ✓ |   |  |   |  |
|                |                                          | CO2 | Used for modeling plant dynamics, designing<br>control algorithms, and running closed-loop<br>simulations                                                                    |   |   |   |   | ✓ |  |   |  |
|                |                                          | CO1 | Reliably identify the sources of various power quality problems.                                                                                                             |   | ~ |   |   |   |  |   |  |
|                |                                          | CO2 | Explain about causes of harmonic and its distortion effect.                                                                                                                  |   |   | ✓ | ✓ |   |  |   |  |
| 19272E52A<br>P | POWER<br>CONDITIONING                    | CO3 | Estimate the impact of various power quality problems on appliances.                                                                                                         | ✓ |   |   |   |   |  |   |  |
|                |                                          | CO4 | Educate the harmful effects of poor power quality and harmonics.                                                                                                             |   |   |   |   | ~ |  |   |  |
|                |                                          | CO5 | Decide the compensators and filters to keep<br>the power quality indices within the<br>standards.                                                                            |   | ~ |   |   |   |  |   |  |
| 19272E51B<br>P | POWER SYSTEM<br>DYNAMICS                 | CO1 | This course first introduces a student to power<br>stability problems and the basic concepts of<br>modeling and analysis of dynamical systems.                               |   |   |   | ✓ |   |  |   |  |
|                |                                          | CO2 | Modeling of power system components -<br>generators, transmission lines, excitation and<br>prime mover controllers                                                           | ✓ |   |   |   |   |  |   |  |

|           |                          | CO3 | Stability of single machine and multi-machine<br>systems is analyzed using digital simulation<br>and small-signal analysis techniques.                                       |  |   | <br> | ✓ |  |  |
|-----------|--------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---|------|---|--|--|
|           |                          | CO4 | The impact of stability problems on power system planning, and operation is also brought out.                                                                                |  | √ |      |   |  |  |
| 19272P61P | PROJECT WORK<br>PHASE-II | C01 | On Completion of the project work students<br>will be in a position to take up any<br>challenging practical problems and find<br>solution by formulating proper methodology. |  | ✓ |      |   |  |  |