

SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- Effectuating success in careers by exploring with the design, digital and computational I. analysis of engineering systems, experimentation and testing, smart manufacturing, technical services, and research.
- Amalgamating effectively with stakeholders to update and improve their core competencies II. and abilities to ethically compete in the ever-changing multicultural global enterprise.
- To encourage multi-disciplinary research and development to foster advanced technology, III. and to nurture innovation and entrepreneurship in order to compete successfully in the global economy.
- To globally share and apply technical knowledge to create new opportunities that proactively IV. advances our society through team efforts and to solve various challenging environmental and societal problems.
- V. To create world class mechanical engineers capable of practice engineering ethically with a solid vision to become great leaders in academia, industries and society.

PROGRAM OUTCOMES (POs)

PO

GRADUATE ATTRIBUTE

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering 1 fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyse complex 2 engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems 3 and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge 4 and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and 5 modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to 6 assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Department of Mechanical Engineering

Ponnaiyeh Ramajayam Institute of Science & Technology (PRIST) Unstitution Deemed to be University 's 3 of the UGC act 1956) NJAVUR - 613 405, FAMIL NADU.

School of Engineering and Teck. Pennsiyah Ramajayam Institute of Science and Technology (PRIST)

Deemed to be University Vanam, Thanjavur-613,4. V

bump

- Environment and sustainability: Understand the impact of the professional engineering 7 solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 8 norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or 9 leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the 10 engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the 11 engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to 12 engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

On successful completion of the Mechanical Engineering Degree programme, the Graduates shall exhibit the following:

- Apply the knowledge gained in Mechanical Engineering for design and development and 1. manufacture of engineering systems.
- Apply the knowledge acquired to investigate research-oriented problems in mechanical 2. engineering with due consideration for environmental and social impacts.
- Use the engineering analysis and data management tools for effective management of 3. multidisciplinary projects.

PEO / PO MAPPING:

						P	Os							PSOs	
PEOs	1	2	3	4	5	6	7	8	9	10	. 11	12	1	2	3
l.	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
II.	3	2	2	2	2	1	1	1	3		2	1	2	3	3
III.	3	1	2	1	2	2	1		1	2		3	3	2	2
IV.	2	2	2	2	2		2				1	2	2	3	3
٧.	3	2	2	2	1	3	2	2	2	1	1	3	3	2	2

Department of Mechanical Engineering Ponnaiyah Ramalayam Institute of Science & Technology (PRIST) (Institution Deemed to be University

is 3 of the UGC Act.1958) THANJAVUR - 613 403, TAMIL NA. 15.

Dung School of Engineering and Tack. Ponnaiyah Ramajayam Institut-Science and Technology (PR Deemed to be University

Vallam, Thanjavur-613

SCHOOL OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

B.TECH - FULL TIME (UG - 2020)

COURSE CODE	COURSE TITLE	со	COURSE OUTCOMES	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
		CO1	Read articles of a general kind in magazines and newspapers.							√		
20147S11	COMMUNICATIVE ENGLISH	CO2	Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.							<		
	ENGLISH	СОЗ	Comprehend conversations and short talks delivered in English							√		
		CO4	Write short essays of a general kind and personal letters and emails in English.							<		
20148S12	ENGINEERING MATHEMATICS – I	CO1	Use both the limit definition and rules of differentiation to differentiate functions.	✓								
	MATHEMATICS-1	CO2	Apply differentiation to solve maxima and minima problems.		✓							

		CO3	Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.			✓				
		CO4	Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.				√			√
		CO5	Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.				✓			
		CO6	evaluate convergent improper integrals.	✓						
		CO7	Apply various techniques in solving differential equations.					√		
	FNCINEEDING	CO1	the students will gain knowledge on the basics of properties of matter and its applications,	✓						
20149S13	ENGINEERING PHYSICS	CO2	the students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre		✓					

			optics,						
			the students will have adequate knowledge on						
		CO3	the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,		✓				
		CO4	the students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and						√
		CO5	the students will understand the basics of crystals, their structures and different crystal growth techniques.			~			
20149S14	ENGINEERING CHEMISTRY	CO1	The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.			√			
20154S15	ENGINEERING GRAPHICS	CO1	familiarize with the fundamentals and standards of Engineering	✓					

			graphics						
		CO2	perform freehand sketching of basic geometrical constructions and multiple views of objects.		✓				
		CO3	project orthographic projections of lines and plane surfaces.					✓	
		CO4	draw projections and solids and development of surfaces.		✓				
		CO5	visualize and to project isometric and perspective sections of simple solids.			✓			
		CO1	Develop algorithmic solutions to simple computational problems				✓		
		CO2	Read, write, execute by hand simple Python programs.				✓		
20150S16	PROBLEM SOLVING AND PYTHON PROGRAMMING	СОЗ	Structure simple Python programs for solving problems.				✓		
	TROGRAMMING	CO4	Decompose a Python program into functions.				✓		
		CO5	Represent compound data using Python lists, tuples, dictionaries.				✓		
		CO6	Read and write data from/to files in Python				✓		

			Programs.							
		CO1	Write, test, and debug simple Python programs.			√				
		CO2	Implement Python programs with conditionals and loops.					√		
20150L17	PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY	CO3	Develop Python programs step-wise by defining functions and calling them.				√			
		CO4	Use Python lists, tuples, dictionaries for representing compound data.		✓					
		CO5	Read and write data from/to files in Python.	✓						
20149L18	PHYSICS AND CHEMISTRY LABORATORY	CO1	apply principles of elasticity, optics and thermal properties for engineering applications.			✓				
		CO1	Read technical texts and write area- specific texts effortlessly.						✓	
20147S21	TECHNICAL ENGLISH	CO2	Listen and comprehend lectures and talks in their area of specialisation successfully.						√	
		соз	Speak appropriately and effectively in varied formal and informal						✓	

			contexts.						
		CO4	Write reports and winning job applications.					✓	
		CO1	Eigen values and eigenvectors, diagonalization of a	✓					
		CO2	Gradient, divergence and curl of a vector point function and related identities.		✓				
20148S22	ENGINEERING MATHEMATICS – II	СОЗ	Evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems and their verification.			√			
		CO4	Analytic functions, conformal mapping and complex integration.					✓	
		CO5	Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.						*

		CO1	the students will have knowledge on the various phase diagrams and their applications		√			
		CO2	the students will acquire knowledge on Fe-Fe ₃ C phase diagram, various microstructures and alloys		✓			
20149S23C	MATERIALS SCIENCE	CO3	the students will get knowledge on mechanical properties of materials and their measurement				√	
		CO4	the students will gain knowledge on magnetic, dielectric and superconducting properties of materials				✓	
		CO5	the students will understand the basics of ceramics, composites and nanomaterials.				✓	
20149S24A	ENVIRONMENTAL SCIENCE AND ENGINEERING	CO1	Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.		√			
		CO2	Public awareness of environmental is at infant		✓			

			stage.							
		CO3	Ignorance and incomplete knowledge has lead to misconceptions			✓				
		CO4	Development and improvement in std. of living has lead to serious environmental disasters			✓				
		CO1	Understand electric circuits and working principles of electrical machines			✓				
20153S25D	BASIC ELECTRICAL ELECTRONICS AND INSTRUMENTATION ENGINEERING	CO2	Understand the concepts of various electronic devices			✓				
	ENGINEERING	CO3	Choose appropriate instruments for electrical measurement for a specific application						✓	
		CO1	illustrate the vectorial and scalar representation of forces and moments	√						
		CO2	analyse the rigid body in equilibrium		✓					
20154S26D	ENGINEERING MECHANICS	соз	evaluate the properties of surfaces and solids					✓		
	MECHANICS	CO4	calculate dynamic forces exerted in rigid body						√	
		CO5	determine the friction and the effects by the laws of friction							✓

		CO1	fabricate carpentry components and pipe connections including plumbing works.	✓			
		CO2	use welding equipments to join the structures.	✓			
		соз	Carry out the basic machining operations	✓			
	ENGINEERING	CO4	Make the models using sheet metal works	✓			
20154L27	PRACTICES LABORATORY	CO5	Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings	✓			
		CO6	Carry out basic home electrical works and appliances	✓ 			
		CO7	Measure the electrical quantities	✓			
		CO8	soldering practices.	√			
	BASIC ELECTRICAL, ELECTRONICS AND	CO1	Ability to determine the speed characteristic of different electrical machines	✓			
20153L28D	INSTRUMENTATION ENGINEERING LABORATORY	CO2	Ability to design simple circuits involving diodes and transistors	√			
		CO3	Ability to use operational amplifiers	✓			

		CO1	Understand how to solve the given standard partial differential equations.	✓						
		CO2	Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.		✓					
20148S31C	TRANSFORMS AND PARTIAL DIFFERENTIAL	CO3	Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.			✓				
	EQUATIONS	CO4	Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.						>	
		CO5	Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.							✓

		CO1	Apply the first law of thermodynamics for simple open and closed systems under steady and unsteady conditions.	√						
	ENGINEERING	CO2	Apply second law of thermodynamics to open and closed systems and calculate entropy and availability.		✓					
20154C32	ENGINEERING THERMODYNAMICS	CO3	Apply Rankine cycle to steam power plant and compare few cycle improvement methods			✓				
		CO4	Derive simple thermodynamic relations of ideal and real gases					✓		
		CO5	Calculate the properties of gas mixtures and moist air and its use in psychometric processes						✓	
		CO1	Apply mathematical knowledge to predict the properties and characteristics of a fluid.	✓						
20154C33	FLUID MECHANICS AND MACHINERY	CO2	Can analyse and calculate major and minor losses associated with pipe flow in piping networks.		✓					
		СОЗ	Can mathematically predict the nature of physical quantities			✓				

		CO4	Can critically analyse the performance of pumps			✓				
		CO5	Can critically analyse the performance of turbines.				✓			
		CO1	Explain different metal casting processes, associated defects, merits and demerits		√					
		CO2	Compare different metal joining processes.			✓				
20154C34	PRODUCTION TECHNOLOGY – I	соз	Summarize various hot working and cold working methods of metals.				√			
		CO4	Explain various sheet metal making processes.					✓		
		CO5	Distinguish various methods of manufacturing plastic components.						✓	
20154C35	ELECTRICAL DRIVES AND CONTROLS	CO1	Upon Completion of this subject, the students can able to explain different types of electrical machines and their performance	√						
	PRODUCTION	CO1	Demonstrate the safety precautions exercised in the mechanical workshop.		✓					
20154L36	TECHNOLOGY LABORATORY – I	CO2	Make the workpiece as per given shape and size using Lathe.			✓				
	(CO3	Join two metals using arc welding.				✓			

		CO4	Use sheet metal fabrication tools and make simple tray and funnel.				✓		
		CO5	Use different moulding tools, patterns and prepare sand moulds.					✓	İ
	COMPLETED AIDED	CO1	Follow the drawing standards, Fits and Tolerances		√				
20154L37	COMPUTER AIDED MACHINE DRAWING	CO2	Re-create part drawings, sectional views and assembly drawings as per standards			✓			
20154L38	ELECTRICAL ENGINEERING LABORATORY	CO1	Ability to perform speed characteristic of different electrical machine		~				l
		CO1	Listen and respond appropriately.		✓				l
	INTERPERSONAL	CO2	Participate in group discussions		√				
20154L39	SKILLS/LISTENING & SPEAKING	CO3	Make effective presentations		✓				
		CO4	Participate confidently and appropriately in conversations both formal and informal		✓				
20148C41D	STATISTICS AND NUMERICAL METHODS	CO1	Apply the concept of testing of hypothesis for small and large samples in real life problems.	✓					

		CO2	Apply the basic concepts of classifications of design of experiments in the field of agriculture.		✓					
		CO3	Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.			√				
		CO4	and second order ordinary differential equations.				✓			
		CO5	Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications					✓		
		CO1	Discuss the basics of mechanism	√						
20154C42	THEORY OF MACHINES-I	CO2	Calculate velocity and acceleration in simple mechanisms		√					
	MIACIIIIIED-I	CO3	1 1			✓				
		CO4	Solve problems on gears and gear trains					✓		
		CO5	Examine friction in					✓		

			machine elements							
		CO1	Explain the mechanism of material removal processes.	√						
		CO2	Describe the constructional and operational features of centre lathe and other special purpose lathes.		√					
20154C43	PRODUCTION TECHNOLOGY – II	СОЗ	Describe the constructional and operational features of shaper, planner, milling, drilling, sawing and broaching machines.			√				
		CO4	Explain the types of grinding and other super finishing processes apart from gear manufacturing processes.				✓			
		CO5	Summarize numerical control of machine tools and write a part program.						✓	
20154C44	ENCIMEEDING	CO1	Explain alloys and phase diagram, Iron-Iron carbon diagram and steel classification.					✓		
	ENGINEERING METALLURGY	CO2	Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.					~		

		CO3	Clarify the effect of alloying elements on ferrous and non-ferrous metals						✓	
		CO4	Summarize the properties and applications of non metallic materials.						✓	
		CO5	Explain the testing of mechanical properties						✓	
		CO1	Understand the concepts of stress and strain in simple and compound bars, the importance of principal stresses and principal planes.	√						
20154C45	STRENGTH OF MATERIALS FOR	CO2	Understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.		✓					
	MECHANICAL ENGINEERS	CO3	Apply basic equation of simple torsion in designing of shafts and helical spring			√				
		CO4	Calculate the slope and deflection in beams using different methods.				√			
		CO5	Analyze and design thin and thick shells for the applied internal and external pressures.					√		

		CO1	Apply thermodynamic concepts to different air standard cycles and solve problems.	✓						
		CO2	Solve problems in single stage and multistage air compressors		✓					
20154C46	THERMAL ENGINEERING - I	CO3	Explain the functioning and features of IC engines, components and auxiliaries.					√		
		CO4	Calculate performance parameters of IC Engines.			✓				
		CO5	Explain the flow in Gas turbines and solve problems.				✓			
		CO1	use different machine tools to manufacturing gears			✓				
	PRODUCTION	CO2	Ability to use different machine tools to manufacturing gears.			√				
20154L47	TECHNOLOGY LABORATORY – II	CO3	Ability to use different machine tools for finishing operations			✓				
		CO4	Ability to manufacture tools using cutter grinder			✓				
		CO5	Develop CNC part programming			✓				

	STRENGTH OF	CO1	Ability to perform Tension, Torsion, Hardness, Compression, and Deformation test on Solid materials.				✓			
20154L48	MATERIALS AND FLUID MECHANICS AND MACHINERY LABORATORY	CO2	Perform Tension, Torsion, Hardness, Compression, and Deformation test on Solid materials.				√			
		CO3	Use the measurement equipments for flow measurement.				✓			
		CO4	Perform test on different fluid machinery.				✓			
		CO1	Write different types of essays.					✓		
20154L 49	ADVANCED READING	CO2	Write winning job applications.					✓		
2010 12 19	AND WRITING	CO3	Read and evaluate texts critically.							✓
		CO4	Display critical thinking in various professional contexts.							✓
20154C51		CO1	Solve problems in Steam Nozzle	✓						
	THERMAL ENGINEERING – II	CO2	Explain the functioning and features of different types of Boilers and auxiliaries and calculate performance parameters.		√					

		CO3	turbines and solve problems.				✓			
		CO4	Summarize the concept of Cogeneration, Working features of Heat pumps and Heat Exchangers						✓	
		CO5	Solve problems using refrigerant table / charts and psychrometric charts						✓	
		CO1	Explain the influence of steady and variable stresses in machine component design.		✓					
	DESIGN OF MACHINE ELEMENTS	CO2	Apply the concepts of design to shafts, keys and couplings.			✓				
20154C52		CO3	Apply the concepts of design to temporary and permanent joints.					~		
		CO4	Apply the concepts of design to energy absorbing members, connecting rod and crank shaft.						~	
		CO5	Apply the concepts of design to bearings.							√
20154C53	METROLOGY AND MEASUREMENTS	CO1	Describe the concepts of measurements to apply in various metrological instruments	✓						

		CO2	Outline the principles of linear and angular measurement tools used for industrial Applications			✓					
		CO3	Explain the procedure for conducting computer aided inspection				✓				
		CO4	Demonstrate the techniques of form measurement used for industrial components						✓		
		CO5	Discuss various measuring techniques of mechanical properties in industrial applications							>	
		CO1	Understand the types of data models.								
20155OE54B	GEOGRAPHIC INFORMATION	CO2	Get knowledge about data input and topology.								
2013301348	SYSTEM	CO3	Gain knowledge on data quality and standards.								
		CO4	Understand data management functions and data output								
20154C55	THEORY OF	CO1	Calculate static and dynamic forces of mechanisms.	✓							
	MACHINES-II	CO2	Calculate the balancing masses and their locations of reciprocating and rotating masses.		✓						

		CO3	Compute the frequency of free vibration.			✓			
		CO4	Compute the frequency of forced vibration and damping coefficient.				✓		
		CO5	Calculate the speed and lift of the governor and estimate the gyroscopic effect on automobiles, ships and airplanes.					✓	
		CO1	Explain gear parameters, kinematics of mechanisms, gyroscopic effect and working of lab equipments.	√					
20154L56	THEORY OF MACHINES LABORATORY	CO2	Determine mass moment of inertia of mechanical element, governor effort and range sensitivity, natural frequency and damping coefficient, torsional frequency, critical speeds of shafts, balancing mass of rotating and reciprocating masses, and transmissibility ratio.		✓				
20154L57	THERMAL ENGINEERING	CO1	conduct tests on heat conduction apparatus and evaluate thermal conductivity of materials.	✓					
	LABORATORY	CO2	conduct tests on natural and forced convective heat transfer apparatus and		✓				

		CO3	evaluate heat transfer coefficient. conduct tests on radiative heat transfer apparatus and evaluate Stefan Boltzmann			✓				
		CO4	constant and emissivity. conduct tests to evaluate the performance of parallel/counter flow heat exchanger apparatus and reciprocating air compressor.				✓			
		CO5	conduct tests to evaluate the performance of refrigeration and airconditioning test rigs.					√		
20154L58	METROLOGY AND MEASUREMENTS LABORATORY	CO1	Measure the gear tooth dimensions, angle using sine bar, straightness and flatness, thread parameters, temperature using thermocouple, force, displacement, torque and vibration.	√						
		CO2	Calibrate the vernier, micrometer and slip gauges and setting up the comparator for the inspection.		√					

		CO1	apply the concepts of design to belts, chains and rope drives.	✓						
	DESIGN OF	CO2	apply the concepts of design to spur, helical gears.			√				
20154C61	TRANSMISSION SYSTEMS	CO3	apply the concepts of design to worm and bevel gears.						✓	
		CO4	apply the concepts of design to gear boxes.						✓	
		CO5	apply the concepts of design to cams, brakes and clutches							✓
		CO1	Explain the 2D and 3D transformations, clipping algorithm, Manufacturing models and Metrics	√						
		CO2	Explain the fundamentals of parametric curves, surfaces and Solids		✓					
20154C62	COMPUTER AIDED DESIGN AND	CO3	Summarize the different types of Standard systems used in CAD				✓			
	MANUFACTURING	CO4	for Lathe & Milling Machines					√		
		CO5	Summarize the different types of techniques used in Cellular Manufacturing and FMS		✓					

		CO1	Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems	✓						
		CO2	Apply free and forced convective heat transfer correlations to internal and external flows through/over various surface configurations and solve problems		√					
20154C63	HEAT AND MASS TRANSFER		Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems			>				
		CO4	Explain basic laws for Radiation and apply these principles to radiative heat transfer between different types of surfaces to solve problems				√			
		CO5	Apply diffusive and convective mass transfer equations and correlations to solve problems for different applications						>	

		CO1	Summarize the basics of finite element formulation.	✓					
		CO2	Apply finite element formulations to solve one dimensional Problems.		✓				
20154C64	FINITE ELEMENT ANALYSIS	CO3	Apply finite element formulations to solve two dimensional scalar Problems.			√			
	ANALISIS	CO4	Apply finite element method to solve two dimensional Vector problems.						✓
		CO5	Apply finite element method to solve problems on iso parametric element and dynamic Problems.						✓
		CO1	Explain the Fluid power and operation of different types of pumps.	√					
20154C65	HYDRAULICS AND	CO2	Summarize the features and functions of Hydraulic motors, actuators and Flow control Valves		✓				
2020 1000	PNEUMATICS	CO3	Explain the different types of Hydraulic circuits and systems			✓			
		CO4	Explain the working of different pneumatic circuits and systems					✓	

		CO5	hydraulic and pneumatic systems.							√	
		CO1	recognize the various parts of the automobile and their functions and materials.	√							
		CO2	discuss the engine auxiliary systems and engine emission control.		✓						
20154E66A	AUTOMOBILE ENGINEERING	СОЗ	distinguish the working of different types of transmission systems.			✓					
		CO4	explain the Steering, Brakes and Suspension Systems.				✓				
		CO5	Engines.	√							
20154L67	CAD / CAM	CO1	Draw 3D and Assembly drawing using CAD software	√							
201341107	LABORATORY	CO2	Demonstrate manual part programming with G and M codes using CAM		✓						
20154L68	DESIGN AND FABRICATION	CO1	design and Fabricate the machine element or the mechanical product.					✓			
201011100	PROJECT	CO2	demonstrate the working model of the machine element or the mechanical						√		

			product.								
		CO1	Make effective presentations				✓				
	PROFESSIONAL	CO2	Participate confidently in Group Discussions.					✓			
20154L69	PROFESSIONAL COMMUNICATION	CO3	Attend job interviews and be successful in them.						✓		
		CO4	Develop adequate Soft Skills required for the workplace							✓	
		CO1	Explain the layout, construction and working of the components inside a thermal power plant.	√							
20154C71	POWER PLANT	CO2	Explain the layout, construction and working of the components inside a Diesel, Gas and Combined cycle power plants.		✓						
20154C/1	ENGINEERING	CO3	Explain the layout, construction and working of the components inside nuclear power plants.			✓					
		CO4	Explain the layout, construction and working				√				

		CO5	Explain the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production.						✓		
		CO1	select the process, equipment and tools for various industrial products.	✓							
		CO2	prepare process planning activity chart.		✓						
20154C72	PROCESS PLANNING AND COST ESTIMATION	AND COST	CO3	explain the concept of cost estimation.			✓				
		CO4	compute the job order cost for different type of shop floor.				✓				
		CO5	calculate the machining time for various machining operations.						~		
20154C73	MECHATRONICS	CO1	Discuss the interdisciplinary applications of Electronics, Electrical, Mechanical andComputer Systems for the Control of Mechanical, Electronic Systems and sensor technology.	√							

		CO2	Discuss the architecture of Microprocessor and Microcontroller, Pin Diagram, Addressing Modes of Microprocessor and Microcontroller.		✓				
		CO3	Discuss Programmable Peripheral Interface, Architecture of 8255 PPI, and various device Interfacing			√			
		CO4	Explain the architecture, programming and application of programmable logic controllers to problems and challenges in the areas of Mechatronic engineering.				✓		
		CO5	Discuss various Actuators and Mechatronics system using the knowledge and skills acquired through the course and also from the given case studies				✓		
20154E75A	RENEWABLE SOURCES OF	CO1	Discuss the importance and Economics of renewable Energy	✓					
2010 127011	ENERGY	CO2	Discuss the method of power generation from Solar Energy		✓				

		СОЗ	Discuss the method of power generation from Wind Energy Explain the method of			✓				
		CO4	power generation from Bio Energy						✓	
		CO5	Explain the Tidal energy, Wave Energy, OTEC, Hydro energy, Geothermal Energy, Fuel							✓
		CO1	Cells and Hybrid Systems.	✓						
		CO2	Illustrate the different types of robot drive systems as well as robot end effectors.		✓					
		CO3	Apply the different sensors and image processing techniques in robotics to improve the ability of robots.			✓				
20154E76A	ROBOTICS	CO4	Develop robotic programs for different tasks and familiarize with the kinematics motions of robot.				✓			
		CO5	Examine the implementation of robots in various industrial sectors and interpolate the economic analysis of robots.						✓	
20155FE74B	WASTE WATER TREATMENT	CO1	Will have knowledge about adsorption and	✓						

			oxidation process.						
		CO2	Will gain idea about various methods available for water treatment.		✓				
		CO3	Will appreciate the necessity of water and acquire knowledge of preliminary treatment.			√			
	SIMULATION AND	CO1	simulate the working principle of air conditioning system, hydraulic and pneumatic cylinder and cam follower mechanisms using MATLAB.	√					
20154L77	ANALYSIS LABORATORY	CO2	analyze the stresses and strains induced in plates, brackets and beams and heat transfer problems.				✓		
		CO3	calculate the natural frequency and mode shape analysis of 2D components and beams.					✓	
20154L78	MECHATRONICS LABORATORY	CO1	Demonstrate the functioning of mechatronics system with various pneumatic, hydraulic and electrical systems.	~					

20154L79	TECHNICAL SEMINAR	CO2	Demonstrate the functioning of control systems with the help of PLC and microcontrollers. To enrich the communication skills of the student and presentations of technical topics of interest, this course is introduced.	✓	✓				
20154S81	PRINCIPLES OF MANAGEMENT	CO1	Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management				✓		
20154E82A	PRODUCTION PLANNING AND CONTROL	CO1	Upon completion of this course, the students can able to prepare production planning and control activities such as work study, product planning, production scheduling, Inventory Control.	√					
		CO2	They can plan manufacturing requirements		√				

			manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).					
20154PW83	PROJECT WORK	CO1	On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.	✓				

HOD
Department of Mechanical Engineering
Ponnalyah Ramajayam Institute of
Science & Technology (PRIST)
Institution Deemed to be University
Is 3 of the UGC Act 1958)
NJAVUR - 613 403, FAMIL NADU.

DEAN

"Engineering and Teck.
"th Ramajayam Institute of and Technology (PRIST)
"med to be University,"
"Thanjayur-613"