
1

Ref: PRIST/REG/CIRC/06-10/2019 Date: 20.10.2019

CIRCULAR

Sub: Debugging Programs events-reg.,

It is hereby informed that Program on code Rally listening events will be conducted cybernauts

club 23.10.2019 (Wednesday) in C Block Seminar Hall, at 10.00am.

We cordially invite all students and teaching staffs to attend the event.

Copy to:

Hon'ble Chancellor (for kind information)

Hon'ble Pro Chancellor (for kind information)

President

Vice Chancelloin

Pro Vice Chancellor

Controller of Examinations

Deans : E&T/Arts& Science/Commerce & Management/Agriculture/Education/

Research/Academic Affairs/Students Affairs

Directors : Admission/RDC/Library/IQAC/PED

Accounts Officer

Personnel Department

IT Support

System Admin

Chief Security officer

File

3 2

The Department of Computer science and Engineering

Cybernauts club conduct Debugging Programs

The Department of Computer science and Engineering, School of Engineering and

Technology, Ponnaiyah Ramajayam Institute of Science &Technology (PRIST), organized

Competition on “Debugging Programs” on October , 2019 in C Block Seminar Hall , The

programme started at 10.00 AM The events start with Tamil thai vazhthu & Niruvanar

vazhthu & Special Address by our Dr.K. Padmapriya prof followed by respected Deans &

principal . They are the pillar to support and guidance to organize the events successfully.

The students have participated in various activities, such as code Rally listening etc.The

events gone with lot of funs & enjoyment.

The events successfully concluded with Senior Student Speech, Prize distribution for the

winners, followed by vote of thanks & National anthem.

4

Debugging Programs

A debugger is a program with special privileges allowing it to start, stop, pause, inspect, and

even modify the state of other programs while they are running for the purpose of finding software

bugs. It is a fundamental tool for software development.

Controlling Program Execution One of the most fundamental functions of the debugger is to

“pause” a program either at a specified source line, or when a certain condition is true to let you

inspect what is going on. The simplest way to do this is through setting a breakpoint.

Breakpoints

Breakpoints A breakpoint is a designated source line where the program will pause each time

it is reached. When being debugged, the program will run up to (but not including) the line at the

breakpoint. When paused, you can inspect the program’s state, change the state (memory, registers),

set other breakpoints, etc. Virtually the only thing you cannot do is change the source code or

compilation options - those require you to end your debug session and recompile before they take

effect. Once done, you may continue. The software will run until it hits another breakpoint (or the

same one again). Breakpoints can be set by clicking on the line numbers at the left of the source

editor. You do not need to recompile after changing breakpoints. When set, a red square appears.

You can clear it by clicking again. Any number of breakpoints can be set.

Stepping

Once paused, there are several ways you may step through your program, with the basic ones

listed below:

Continue Executes until the next breakpoint (including arriving at the current breakpoint

again) or watch is triggered Step Into Executes only the first line in the called function then stops

Step Over Executes the next function call in its entirety, without stepping you through the

intermediate instructions Step Out Runs to the end of the current function, then stops at the next line

in the calling function Run to Cursor You may select a source line using the cursor in the editor.

5

By definition, an exception condition is exceptional - a properly-written program should

never terminate this way. You should always check for (or prevent) errors, catch them, and handle

them properly.

Common Exceptions Some of the more common exceptions that you should watch out for

are: • Dividing by zero, or other invalid arithmetic operations

 • Reading or writing past the end of an array int x[100]; x[100] = 1; // oops! (remember

x[100] runs from x[0] to x[99])

 • Reading or writing memory that does not belong to the program, for instance with an

uninitialized pointer or reading past the end of a block of memory int *p; // uninitialized pointer p=2;

// what does p point to?

 • Trying to read something into a buffer that is too small char dst[10]; strcpy(dst,very long

string); // copying a string that is too large gets(dst,f); // reads a line from file - length unknown

(hopefully less than 10!)

6

